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Abstract 

This study estimates the combined direct and indirect rebound effects from various types of 

energy efficiency improvement and behavioural change by UK households and explores how 

these effects vary with total expenditure. The methodology is based upon estimates of the 

expenditure elasticity and GHG intensity of 16 categories of goods and services, and allows 

for the capital cost and embodied emissions of the energy efficiency measures themselves. 

The study finds that rebound effects, in GHG terms, are modest (0-32%) for measures 

affecting domestic energy use, larger (25-65%) for measures affecting vehicle fuel use and 

very large (66-106%) for measures that reduce food waste. Furthermore, measures 

undertaken by low income households are associated with the largest rebound effects, with 

direct emissions forming a larger proportion of the total rebound effect for those households. 

Measures that are subsidised or affect highly taxed energy commodities may be less effective 

in reducing aggregate emissions. These findings highlight the importance of allowing for 

rebound effects within policy appraisals, as well as reinforcing the case for economy-wide 

carbon pricing. 
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1 Introduction 

‘Rebound effects’ is a widely used umbrella term for a variety of economic responses to 

improved energy efficiency and ‘energy-saving’ behavioural change. The net result of these 

effects is typically to increase energy consumption and greenhouse gas (GHG) emissions 

relative to a counterfactual baseline in which these responses do not occur. To the extent that 

rebound effects are neglected in policy appraisals, the energy and emissions ‘saved’ by such 

measures may be less than anticipated. For example, energy efficient light-bulbs will make 

lighting cheaper, thereby encouraging people to illuminate larger areas to higher levels over 

longer periods of time. Responses such as this will offset some of the potential energy and 

GHG savings. 

This paper estimates the rebound effects following a number of energy efficiency 

improvements and behavioural changes by UK households. These effects are estimated in 

terms of GHG emissions, rather than energy consumption, and are averaged over a ten-year 

period. While there is a growing literature on rebound effects for households (Sorrell et al., 

2009a), the majority of studies focus solely upon direct rebound effects and neglect the 

associated indirect rebound effects which may frequently be of comparable magnitude. There 

are also very few studies that investigate how these rebound effects vary between different 

types of households. This study therefore seeks to estimate the magnitude of both direct and 

indirect rebound effects from the selected measures and to investigate how these vary 

between different income groups. The study builds upon earlier analyses by Druckman et al 

(2011) and Chitnis et al (2013). 

2 Concepts and previous work 

To aid understanding of rebound effects for households, we make the following distinctions: 
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• Direct versus indirect rebound effects: For households, direct rebound effects derive 

from increased consumption of energy services, such as heating or lighting, whose 

effective price has fallen as a result of improved energy efficiency. For example, the 

replacement of traditional light-bulbs with compact fluorescents will make lighting 

cheaper, so people may choose to use higher levels of illumination or not switch lights 

off in unoccupied rooms. In contrast, indirect rebound effects derive from increased 

consumption of other goods and services (e.g. leisure, clothing) that also require 

energy and GHG emissions to provide. For example, the cost savings from more 

energy efficient lighting may be put towards an overseas holiday.  

• Efficiency versus sufficiency rebound effects: Rebound effects for households do not 

result solely from energy efficiency improvements, such as installing energy-efficient 

boilers, but also from behavioural changes, such as reducing average internal 

temperatures. This is because the cost savings from these ‘sufficiency measures’ will 

either be spent on other goods and services or saved/invested, and both of these 

actions will necessarily be associated with energy use and GHG emissions. While 

efficiency improvements lead to both direct and indirect rebound effects, sufficiency 

measures only lead to indirect effects. 

• Energy versus emission rebound effects:  Both direct and indirect rebound effects may 

be estimated in terms of energy consumption, carbon dioxide (CO2) emissions or 

GHG emissions, but the magnitude of those effects will differ in each case. As the 

carbon/GHG intensity of energy systems changes over time, the relative magnitude of 

these rebound effects will also change – and in some circumstances, rebound effects 

may be found to be small in energy terms but large in GHG terms, or vice versa.  
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• Direct versus embodied energy use and emissions:  Households consume significant 

amounts of energy ‘directly’ in the form of electricity1, heating fuels and vehicle 

fuels, but they also consume energy ‘indirectly’, since energy is used at each stage of 

the supply chain for all goods and services. This life-cycle energy use is commonly 

termed embodied energy while the associated emissions are termed embodied 

emissions. While direct rebound effects typically relate to direct energy use and 

emissions, indirect rebound effects may derive from both direct and embodied energy 

use and emissions. For example, the savings from an energy-efficient heating or 

cooling system may be spent upon more heating or cooling (direct rebound, direct 

emissions), more lighting (indirect rebound, direct emissions) or more furniture 

(indirect rebound, embodied emissions). 

Table 1 uses the above categories to classify the limited number of studies that estimate both 

direct and indirect rebound effects for households. These studies vary in the methodologies 

and economic models employed, the categories used for classifying household expenditures, 

the types of measure investigated, the rebound mechanisms captured and the quantitative 

results obtained. While most focus upon improved energy efficiency in electricity, heating or 

personal travel, others examine sufficiency measures, such as reducing car travel or food 

waste. Different studies estimate rebound effects in energy, CO2 and GHG terms, but no 

study estimates and compares all three.  

This diversity, combined with the methodological limitations of the various studies (see 

Sorrell, 2010), the limited use of sensitivity tests and the lack of systematic investigation 

make it difficult to draw firm conclusions. In particular, all but two of the studies estimate 

rebound effects for an ‘average’ household in the relevant countries and therefore provide no 

information on how rebound effects vary between different socio-economic groups. The 
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exceptions are Murray (2013) who investigates rebound effects from both efficiency and 

sufficiency measures for different income groups in Australia, and Thomas and Azevedo 

(2013) who do the same for the US. Both find that rebound effects are inversely related to 

household income and that embodied emissions form a larger proportion of the total rebound 

effect for higher income households. Murray further observes that higher income households 

have more scope for reducing the environmental impacts of their consumption patterns, as 

well as the lowest rebound effects from doing so. 

This paper takes a similar approach to Murray (2013) for households in the UK. We estimate 

direct and indirect rebound effects in GHG terms following a range of efficiency and 

sufficiency measures by households in five income groups (quintiles). We also extend the 

existing literature by allowing for the capital cost of energy-efficient equipment, the 

emissions embodied in that equipment and the emissions associated with both household 

savings and government expenditure of product taxation revenues. 



 

 

 

 

Table 1: Previous estimates of combined direct and indirect rebound effects for households 

Author Region No. of 
commodity 
categories 

Measure Area Metric Energy/ 
emissions 

Estimated 
rebound 

effect (%) 
Lenzen and 

Day (2002) 

Australia 150 Efficiency & 

sufficiency 

Food; 

heating 

GHGs Direct and 

embodied 

45-123% 

Alfreddson 

(2004) 

Sweden 300 Sufficiency Food; travel; 

utilities 

CO2 Direct and 

embodied 

7-300% 

Brannlund 

(2007) 

Sweden 13 Efficiency Transport; 

utilities 

CO2 Direct and 

embodied 

120-175% 

Mizobuchi 

(2008) 

Japan 13 Efficiency Transport; 

utilities 

Energy Direct and 

embodied 

12-38% 

Kratena and 

Wuger 

(2008) 

Austria 6 Efficiency Transport; 

heating; 

electricity 

Energy Direct only 37-86% 

Druckman 

et al (2011) 

UK 16 Sufficiency Transport, 

heating, food 

GHGs Direct and 

embodied 

7-51%  

Thomas 

(2013) 

US 74 Efficiency Transport, 

electricity 

GHGs Direct and 

embodied 

7-25%  

Murray 

(2013) 

Australia 36 Efficiency & 

sufficiency 

Transport, 

lighting 

GHGs Direct and 

embodied 

4–24%  

Chitnis et al 

(2013) 

UK 16 Efficiency Heating, 

lighting 

GHGs Direct and 

embodied 

5–15% 

 



 

 

 

 

3 Methodology 

3.1 Approach 

This paper investigates ten widely advocated measures for reducing GHG emissions from UK 

households. Seven of these are efficiency measures that require the purchase and installation 

of equipment, while three are sufficiency measures that solely involve behavioural change 

(Table 2). We estimate that all of the efficiency measures were cost effective at normal 

market discount rates for an average UK household in 2009, although individual measures are 

not suitable for all households and the potential cost savings vary widely from one household 

to another. Four of the efficiency measures were eligible for investment subsidies under the 

UK Carbon Emissions Reduction Target (CERT) in 2009, with the size and availability of 

subsidies varying with the socio-economic circumstances of the household (DECC, 2010b).  

All but one of the measures are aimed at reducing household consumption of electricity, 

heating fuels or vehicle fuels and hence are expected to reduce the direct GHG emissions 

associated with household consumption. The exception is eliminating food waste which 

primarily affects the embodied emissions associated with food consumption.  

Both the measures themselves and the method for estimating rebound effects were previously 

described in Druckman et al (2011) and Chitnis et al (2013). This paper extends this analysis 

by exploring the variation in rebound effects between different income groups. The method 

relies upon four sources of information: 

• Estimates of the savings in energy use and emissions from undertaking the efficiency 

measures in an ‘average’ UK dwelling, excluding any rebound effects. The estimates 
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for the domestic energy measures (1-6 and 8) are derived from the Community 

Domestic Energy Model (CDEM), a detailed engineering model of the English 

housing stock (Firth et al., 2009). The corresponding estimates for the vehicle fuel (7 

and 9) and food (10) measures are summarised in Annex B. 

• Estimates of the embodied GHG emissions associated with the relevant energy 

efficiency equipment, such as insulation materials. These are derived from a number 

of Life Cycle Analyses (LCA), summarised in Chitnis et al (2013). 

• Estimates of the direct and embodied GHG emissions associated with household 

consumption of different categories of goods and services. These are derived from the 

Surrey Environmental Lifestyle Mapping Framework (SELMA), a quasi-multi-

regional, environmentally extended input-output model that provides estimates of the 

GHG intensity of UK household expenditure in each category (in tCO2e/£) for 2004 

(Druckman et al., 2008; Druckman and Jackson, 2008).2  

• Estimates of the expenditure elasticities of the 16 categories of household goods and 

services for each of five income groups. These are derived from econometric analysis 

of the 2009 UK Living Costs and Food Survey (LCFS). 

Section 3.2 summarises the method for estimating expenditure elasticities, while Section 3.3 

summarises the method for estimating rebound effects. 
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Table 2: Selected measures 

Type No. Measure Emissions 

targeted 

Energy 

service 

Subsidy 

available 

Efficiency 

measures  

1 Insulating previously un-insulated 

cavity walls 

Direct  Heating  Yes 

 2 Topping up loft insulation to 270 

mm 

Direct  Heating Yes 

 3 Replacing existing boilers with 

condensing boilers 

Direct  Heating  No 

 4 Insulating hot water tanks to best 

practice (75 mm jacket) 

Direct  Heating  Yes 

 5 Replacing existing incandescent 

bulbs with compact fluorescent 

bulbs (CFLs) 

Direct  Lighting No 

 6 Replacing all existing lighting with 

LEDs 

Direct  Lighting Yes 

 7 Replacing an existing car with an 

energy efficient model 

Direct  Car transport No 

Sufficiency 

measures 

8 Reducing average internal 

temperatures by one degree 

centigrade 

Direct  Heating  - 

 9 Eliminating all car journeys of less 

than two miles  

Direct  Car transport  - 

 10 Eliminating food waste Embodied  Nutrition - 

Combined 

measures 

11 1,2,3,4, and 5 combined Direct Heating and 

lighting 

Yes 

12 1,2,3,4, and 6 combined Direct Heating and Yes 
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lighting 

13 8, 9 and 10 combined Direct and 

embodied 

Heating, car 

transport and 

nutrition 

- 

3.2 Expenditure model 

To estimate rebound effects, it is necessary to estimate how the cost savings from the 

measures will be re-spent on different categories of goods and services. To model this we 

estimate the expenditure elasticities of 16 categories of goods and services (i - Table 3) for 

five different income groups, or quintiles (j - Table 4).  

To calculate these elasticities, we estimate Engel curves for each category of goods and 

services. Engel curves describe how the expenditure on a particular category of goods or 

services varies with total expenditure. Our data source for household expenditure is the 2009 

edition of the UK Living Costs and Food Survey (LCFS). This uses a stratified random 

sample of ~6000 households who are required to keep detailed records of their expenditure 

over a two-week period, as well as providing further information on their purchases of large 

items over the previous twelve months. Since income is not accurately recorded by the LCFS, 

we use total household expenditure as a proxy and adjust this with an equivalence scale so 

different households can be compared (Lewbel, 1997). We use the ‘OECD modified 

equivalence scale’ which calculates the equivalised expenditure (Xh) of a household (h) as 

follows: 

h

h
h n
ZX =           (1) 

Where Zh is the expenditure of household h and nh is the equivalised household size, given 

by: 
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hhh CAn 3.05.01 ++=          (2) 

Where Ah is the number of additional household members who are over the age of 14 and Ch 

is the number of children below the age of 14. This scale implies, for example, that a 

household with two adults and two children needs more than twice the income ( 1.2=hn ) of a 

single adult household ( 0.1=hn ) to achieve a comparable standard of living. With these 

adjustments, the more accurate label for our ‘income quintiles’ is ‘equivalised total 

expenditure quintiles’. Table 4 summarises the mean equivalised household size and 

equivalised annual expenditure in each quintile. 
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Table 3: Categories of goods and services 

Category (i) COICOP 

category 

Description 

1 1 Food & non-alcoholic beverages 

2 2 Alcoholic beverages, tobacco, narcotics 

3 3 Clothing & footwear 

4 4.5.1 Electricity 

5 4.5.2 Gas 

6 4.5.3 and 4.5.4 Other fuels 

7 4.1 to 4.4 Other housing 

8 5 Furnishings, household equipment & household maintenance 

9 6 Health 

10 7.2.2.2 Vehicle fuels and lubricants 

11 Rest of 7 Other transport 

12 8 Communication 

13 9 Recreation & culture 

14 10 Education 

15 11 Restaurants & hotels 

16 12 Miscellaneous goods & services  

Notes: COICOP - Classification of Individual Consumption According to Purpose. Other housing includes rent, 

mortgage payments, maintenance, repair and water supply. Other transport includes public transport, aviation 

and non-fuel expenditure on private vehicles. 
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Table 4: Mean equivalised household size and annual expenditure in each quintile 

 Annual household 

expenditure ( jZ ) 

Equivalised 

household size ( jn ) 

Equivalised annual 

household 

expenditure ( jX ) 

Quintile 1 £6.8k 1.46 £4.7k 

Quintile 2 £12.4k 1.59 £7.8k 

Quintile 3 £17.3k 1.65 £10.5k 

Quintile 4 £23.2k 1.64 £14.1k 

Quintile 5 £40.3k 1.64 £24.6k 

Mean £19.7k 1.60 £12.3k 

Note: Based upon the 2009 Living Costs and Food Survey using the OECD modified equivalence scale 

For simplicity we adopt the widely used Working-Leser (WL) form for the Engel curves 

(Leser, 1963)3 and add the age of the ‘household reference person’4 as an additional 

explanatory variable. The WL function then takes the lin-log form: 

iiiii HRPXW υγβα +++= ln        (3) 

Where: 

X
XW i

i =           (4) 

iX  is the equivalised expenditure on category i; X  is equivalised total expenditure; iW  is the 

share of category i in total expenditure ( 10 ≤≤ iW ); HRP  is the age of the household 

reference person; iα , iβ  and iγ  are the unknown parameters; and iυ  is the random error 

term.  
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For the WL model, the adding-up restriction implies that: 

∑ =
i

i 1α   and  ∑ =
i

i 0β        (5) 

This is satisfied automatically when the model is estimated using OLS. The expenditure 

elasticity of category i is given by: 

X
X

X
X

X
X

i

i

i

i ln
ln

∂

∂
=

∂

∂
=ε          (6) 

For the WL model, this leads to:  

1+=
iW
i

i

β
ε           (7) 

When estimating elasticities for each quintile ( j
i
ε ), this expression is evaluated at the mean 

value of the expenditure share for that category within each quintile ( j
iW ): 

1+= j
i

j

W
i

i

β
ε           (8) 

3.3 Rebound model 

Following Chitnis et al (2013), we model the impact of each measure on global GHG 

emissions as the net result of three different effects which we term the engineering, embodied 

and income effects respectively: 

• Engineering effect ( HΔ ): Each efficiency measure is expected to reduce the amount 

of energy required to deliver a given energy service (e.g. heating, lighting, transport), 

while each sufficiency measure is expected to reduce consumption of the relevant 
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energy service. The engineering effect represents the estimated reduction in GHG 

emissions assuming that consumption of the energy service remains unchanged for 

the efficiency measures and falls for the sufficiency measures. 

• Embodied effect ( MΔ ): Efficiency measures require the manufacture and installation 

of equipment (e.g. insulation materials) which is necessarily associated with GHG 

emissions at different stages of the supply chain. These emissions are conventionally 

treated as ‘embodied’ in the relevant equipment. The embodied effect represents the 

difference between the embodied emissions associated with the measure and those 

associated with the relevant alternative - which may be doing nothing (e.g. for loft 

insulation), continuing to use existing equipment or purchasing less energy efficient 

equipment. Sufficiency measures do not require additional equipment, so have no 

embodied effect. 

• Income effect ( GΔ ): Both efficiency and sufficiency measures should lead to reduced 

expenditure on the relevant energy service. The resulting cost savings may be partly 

offset by the capital cost of the relevant measure, but the net savings will be positive 

if averaged over a period longer than the simple payback time. This ‘avoided’ 

expenditure may be treated as analogous to an increase in household income since it 

allows increased consumption of goods and services and/or increased savings. The 

income effect is an estimate of the impact on global GHG emissions of this increased 

consumption and savings. For efficiency measures the income effect includes 

increased consumption of the energy service, while for sufficiency measures it does 

not.5  

The estimated total impact ( QΔ ) of each measure on global GHG emissions is then given by: 
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GMHQ Δ+Δ+Δ=Δ         (9) 

In percentage terms, we define the rebound effect (RE) from each measure as: 

⎥⎦

⎤
⎢⎣

⎡
Δ

Δ−Δ
=

H
QHRE *100         (10) 

Substituting for QΔ  from Equation 9 gives 
 

⎥⎦

⎤
⎢⎣

⎡
Δ

Δ+Δ
−=

H
MGRE *100         (11) 

This definition treats the embodied effect as offsetting some of the anticipated GHG savings 

from the measure and thereby contributing to the rebound effect. An alternative approach, 

which is not used here, would be to subtract the embodied effect from the anticipated GHG 

savings (Chitnis et al., 2013). 

In implementing this approach, we assume that each measure is undertaken by all eligible6 

UK households in 2009 (t=1). We estimate the corresponding impact on global GHG 

emissions over a period of T years (t=1 to T) where T is less than the economic lifetime of the 

energy efficiency measures. For simplicity, we present all our results for a ten-year period 

(T=10) and hold the variables affecting GHG emissions fixed over this period. A different 

choice of time period would modify the results. We take 2009 as the reference year for all 

‘real’ values and estimate each effect on an equivalised basis. 

We estimate the engineering ( j
tHΔ ), embodied ( j

tMΔ ) and income ( j
tGΔ ) effects for each 

quintile and year using the mean value of total equivalised expenditure ( jW ) and household 

composition ( jn ) within each quintile (assumed to be fixed over period T). We then estimate 
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the rebound effect for households in each quintile averaged over a period of T years ( jRE ) as 

follows: 

[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ+Δ
−=

∑

∑

=

=
T

t

j
t

T

t

j
t

j
t

j

H

MG
RE

1

1100        (12) 

While factors such as variations in dwelling characteristics and average internal temperatures 

could lead to significant variations in the embodied and engineering effects between 

quintiles, we lack the data to model these explicitly. Instead, we model differences in the 

engineering effect by allowing for differences in the equivalised expenditure on energy 

commodities by each quintile.  

Annex A describes the estimation of the engineering, embodied and income effects in detail. 

4 Assumptions 

In this section and in Annex B, we summarise some of the assumptions used when estimating 

these effects for each measure and quintile. Many of the relevant assumptions are 

summarised in Druckman et al (2011) and Chitnis et al (2013), so only the key points are 

highlighted here.  

4.1 Assumptions for the engineering effect 

We use the CDEM to estimate the percentage energy savings by fuel type from the domestic 

energy measures (1-6 and 8 in Table 2) (Chitnis et al, 2013). These relate to an ‘average’ UK 

household and allow for the fact that some measures (e.g. cavity wall insulation) are only 

suitable for a subset of households. The relevant assumptions for the other measures are 

summarised in Annex B. 
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To obtain estimates of the GHG savings from each measure for each quintile ( j
tHΔ ) we use 

the above to adjust our estimates of the GHG emissions associated with the relevant 

expenditure categories for each quintile ( j
ltH  where l = electricity, gas, other fuels, vehicle 

fuels or food and non-alcoholic beverages). The latter in turn are estimated from the product 

of equivalised expenditures ( j
ltX  – in £) and the GHG intensity of expenditure ( ltu  – in 

tCO2e/£) for each quintile and expenditure category. This approach ensures that our estimates 

of the engineering effect vary between quintiles and are consistent with our estimates of the 

income effect which are derived in a similar way (see Table A.1).  

4.2 Assumptions for the embodied effect 

Estimates of the incremental embodied emissions for each measure are summarised in Table 

A.2. These represent the difference between the embodied emissions of the measure and 

those associated with the relevant counterfactual. Sufficiency measures involve no 

equipment, so have no embodied emissions. The assumptions for the domestic energy 

measures (1-6) are taken from a number of LCA studies, summarised in Chitnis et al (2013). 

For the lighting measures, we assume that the counterfactual involves the continued use of 

traditional, incandescent bulbs. 

In the UK, the emissions embodied within an average new car typically account for 16-24% 

of its total life cycle emissions (Carbon Trust, 2011).7 We assume that only cars at the end of 

their natural life are scrapped and that they are replaced by a fuel-efficient diesel rather than 

an average new car. Embodied emissions will form a greater proportion of total lifecycle 

emissions for the latter, but may be smaller in absolute terms and could therefore lead to a 

negative embodied effect. But in the absence of more accurate data, we assume that the 

embodied effect is zero for this measure. 
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4.3 Assumptions for the income effect 

Estimates of the income effect require assumptions about the equivalised cost savings ( j
tXΔ ) 

and capital cost ( j
tKΔ ) associated with each measure for each quintile, the GHG intensity of 

expenditure in each category ( itu ) and the expenditure elasticity of those categories for each 

quintile ( j
iε ).  

Estimates of the cost savings from the domestic energy measures are derived using the 

CDEM and data on domestic energy prices in 2009 (Chitnis et al., 2013). Estimates for the 

other measures rely upon simpler calculations, described in Annex B. This Annex also 

summarises our assumptions for the capital cost of each measure both with and without the 

subsidies provided by the Carbon Emissions Reduction Target (CERT). 

Estimates of the GHG intensity of household expenditure in 2009 ( itu ) are derived from 

SELMA, with additional adjustments to allow for the emissions associated with household 

savings and for government expenditure of product taxation revenues. For the former, we 

assume the average household saves and invests 15% of their annual income, and that the 

GHG intensity of this investment is comparable to the UK average.8 For the latter, we 

estimate the GHG emissions associated with spending the revenue from product taxes in each 

category and add these to the emissions provided by SELMA.9  

Figure 1 (top) shows that expenditure on electricity, gas, other fuels and vehicle fuels is 

approximately three times as GHG intensive as expenditure on the other categories and five 

times as intensive as the share-weighted mean (see also Table A.5). But for an average 

household, the high GHG intensity of energy commodities is offset by their small share of 

total expenditure (Figure 1, middle), with the result that direct energy consumption only 

accounts for 41% of an average household’s ‘GHG footprint’ (Figure 1, bottom), split 
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between 29% domestic energy (i.e. electricity, gas and other fuels) and 12% vehicle fuels. As 

discussed below, these proportions vary significantly between quintiles. The category 

providing the largest single contribution to total emissions for an average household is food 

and non-alcoholic beverages (14%).  

Our estimates of GHG intensities allow for the variation of product taxation between 

categories: namely VAT exemption for food and non-alcoholic beverages, lower rate VAT 

for domestic energy and high taxation of vehicle fuels (~60% of retail price). The latter 

contributes to the comparatively low GHG intensity of vehicle fuels compared to domestic 

energy.  

Figure 1 GHG intensity of expenditure, share of total expenditure and share of total GHG 

emissions by category for an average household  
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Table 5 summarises the estimated expenditure elasticities for each category and quintile ( j
iε ), 

while Table A.7 summarises the estimated Engel curves.10 The coefficient of log equivalised 

total expenditure ( iβ ) was found to be significant at the 5% level for all categories, while that 
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for the age of the household reference person ( iγ ) was significant for all but one category. 

Despite the low adjusted R2, the WL specification provided a better fit than alternative 

functional forms.11  

Food, drink and domestic energy were found to be expenditure inelastic for all quintiles, 

( 1j
i <ε ), as was communication and other housing (Table 5). All other categories were found 

to be expenditure elastic ( 1j
i >ε ). The elasticity of most categories of expenditure fell as 

equivalised total expenditure increased, although to varying degrees and more steeply for 

necessities (defined here as 1j
i <ε ). The elasticities for electricity and gas were estimated to 

be negative for Q5 - suggesting, rather surprisingly, that energy is an inferior good for these 

households. However, the assumed values for these elasticities have only a small impact on 

the estimated rebound effects. 
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Table 5 Estimated expenditure elasticities by quintile in 2009 

Category Quintile Mean 

1 2 3 4 5  

Food & non-alcoholic beverages 0.65 0.57 0.48 0.38 0.06 0.39 

Alcoholic beverages & tobacco 0.71 0.68 0.65 0.60 0.45 0.59 

Clothing & footwear 1.51 1.34 1.32 1.27 1.28 1.30 

Electricity 0.57 0.37 0.17 0.00 -0.62 0.05 

Gas 0.62 0.49 0.34 0.15 -0.25 0.23 

Other fuels 0.85 0.77 0.82 0.79 0.69 0.77 

Other housing 0.73 0.73 0.68 0.68 0.56 0.66 

Furnishings 1.60 1.56 1.44 1.40 1.30 1.38 

Health 1.82 1.69 1.59 1.50 1.38 1.48 

Vehicle fuels & lubricants 1.20 1.13 1.12 1.13 1.17 1.14 

Other transport 2.31 1.80 1.61 1.52 1.40 1.52 

Communication 0.63 0.54 0.47 0.39 0.06 0.38 

Recreation & culture 1.39 1.37 1.31 1.30 1.23 1.28 

Education 9.96 5.63 3.97 2.37 1.47 1.90 

Restaurants & hotels 1.34 1.27 1.24 1.22 1.22 1.23 

Miscellaneous goods & services 1.10 1.10 1.10 1.09 1.09 1.09 

5 Results 

This section presents our estimates of the rebound effects from the different measures for 

each quintile, averaged over a period of ten years. To illuminate the drivers of these results, 

we first discuss the magnitude of the engineering, embodied and income effects for an 

average household and then summarise how the quintiles differ in terms of equivalised 

expenditure, GHG emissions and average GHG intensity of expenditure. We then present the 
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estimated rebound effects for each quintile in two stages, namely: a) income effects only, 

ignoring capital costs; and b) income and embodied effects, allowing for capital costs (with 

and without the CERT subsidies). Section 6 discusses the implications. 

5.1 Estimated effects for an average household 

Figure 2 and Table A.6 summarise our estimates of the engineering, embodied and income 

effects for each measure as a percentage of baseline emissions for an average UK household. 

The corresponding effects for each quintile may depart significantly from these values.  

The results suggest that, ignoring rebound effects, the combined adoption of the efficiency 

measures could reduce the total ‘GHG footprint’ of an average UK household by ~3.8% 

while the combined adoption of the sufficiency measures could reduce emissions by a 

comparable amount.12 The measures with the largest single impact (~1.5%) are reducing 

internal temperatures and reducing food waste, in part because these are available to all 

households and affect the categories with the largest share of total emissions. For those 

measures that are only suitable for a subset of households (e.g. cavity wall insulation), the 

percentage reductions for adopting households will be higher.  

Figure 2 compares the relative size of the income and embodied effects for the efficiency 

measures. Averaged across all measures, the embodied effect is only 13% of the income 

effect. However, embodied emissions are more important for loft insulation and LED lighting 

- which both have a lifetime that considerably exceeds the ten year period considered here. 

Figure 3 illustrates the estimated contribution of each category to the income effect for 

combined measures 1-4 and 6, ignoring capital costs. The relative share of each category 

depends upon the product of its GHG intensity, expenditure share and expenditure elasticity. 

So despite being GHG intensive, the three domestic energy categories provide only a small 
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(7.1% total) contribution to the income effect owing to their small share of total expenditure 

and low expenditure elasticity for an average household (Figure 2).  

Figure 2  Estimated engineering, embodied and income effects (ignoring capital cost) for an 

average household (percentage of baseline emissions) 
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Figure 3 Contribution of different categories to the income effect for an average household 

(measures 1-4 and 6 combined) 
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Figure 4 Equivalised expenditure by category and quintile (2009)  

 

 

Figure 5 plots GHG emissions against total expenditure, while Figure 6 shows the breakdown 
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For example, spending by Q1 households is 16.3% more GHG intensive than spending by Q5 

households. A similar pattern is observed with marginal expenditures which are ~19% less 

GHG intensive than average expenditures (Figure 7). This pattern suggests that total GHG 

emissions may not increase at the same rate as incomes increase, but income redistribution 

may increase aggregate emissions. 

Since necessities are comparatively GHG intensive, low-income households have 

disproportionately high emissions relative to expenditure. Figure 8 shows that embodied 

emissions are more strongly correlated with total expenditure than direct emissions, with the 

correlation being weakest for domestic energy emissions. Hence, while total emissions for Q5 

households are four and half times larger than Q1 households, their domestic energy 

emissions are only 60% larger while their embodied emissions are more than six times larger. 

Saunders (2013) finds a similar distribution for US households. 

Figure 5 GHG emissions versus total expenditure for the sample of households 
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Figure 6 Equivalised GHG emissions by category and quintile (2009) 
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Figure 7  Average and marginal GHG intensity of expenditure by quintile (2009) 
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Figure 8 Equivalised direct and embodied emissions by quintile  
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5.3 Rebound effects from income effects alone 

Table 6 summarises our estimates of the rebound effect for each measure for an average 

household. These estimates relate to the income effect alone; in other words, ignoring the 

embodied effect and capital cost of the efficiency measures. As with our earlier work (Chitnis 

et al., 2013), the results show that rebound effects for the domestic energy measures are 

broadly comparable and relatively modest - with all estimates converging around 14-15%. 

The primary reason these effects are modest is that most of the re-spending is on goods and 

services with a much lower GHG intensity than domestic energy itself. The rebound effects 

for heating and lighting are comparable in size because, in our model, expenditure on 

electricity is approximately as GHG intensive as expenditure on heating fuels. However, this 

result is contingent upon the fuel mix in electricity generation in 2009. As Chitnis et al 

(2013) observe, the transition towards a low carbon electricity system in the UK will increase 

the (GHG) rebound effect from electricity efficiency measures - with those effects potentially 

exceeding 100% by 2030.14 

Again confirming our earlier work (Druckman et al., 2011), the rebound effects for the 

vehicle and food measures are found to be much larger: namely 46% for the efficient car, 

28% for reducing car use and 77% for eliminating food waste. In these cases, reduced 

consumption of vehicle fuels and food leads to relatively modest GHG savings and relatively 

high cost savings. These cost savings are then spent upon other goods and services that have 

a comparable GHG intensity, leading to a large income effect relative to the engineering 

effect and hence a high rebound effect.  

For the efficient car, the cost savings on vehicle fuels are supplemented by the cost savings 

on vehicle excise duty which amplifies the rebound effect. This demonstrates how measures 

that achieve cost savings in more than one category, as well as measures that are subsidised 
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in some way, may be associated with larger rebound effects. However, a full accounting of 

the GHG implications of subsidies would need to consider their source (e.g. taxation) and the 

corresponding implications for economic activity and emissions.  

While reducing food waste has the largest technical potential to reduce emissions, it is also 

the measure with the largest rebound effect (77%). As a result, the net contribution to 

emission reductions from this measure is less than a quarter of its technical potential and only 

one tenth of the contribution from the domestic energy measures combined (Table A.6).  

Table 6 also indicates the contribution of direct emissions to the estimated rebound effect for 

each measure. These numbers set an upper limit for the direct rebound effect for the 

efficiency measures, since a significant proportion of these emissions derive from increased 

consumption of the relevant energy service.15 The results show that, on average, direct 

emissions contribute only ~19% of the rebound effect - in other words, the bulk of the 

rebound effects in our model derive from the emissions embodied in non-energy goods and 

services. Moreover, a large (~40%) and growing proportion of these occur outside the UK 

(Druckman and Jackson, 2009; Wiedmann et al., 2008). 
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Table 6 Estimated rebound effects for an average household - income effects alone, ignoring 

capital costs 

No. Measure Rebound effect (%) Contribution of direct 

emissions to the 

rebound effect  

(% of total) 

1 Cavity wall insulation 14.5 20.4 

2 Loft insulation 14.5 20.4 

3 Condensing boiler 15.2 20.4 

4 Tank insulation 14.6 20.4 

5 CFLs 15.3 29.0 

6 LEDs 15.2 20.4 

7 Efficient car 46.4 20.4 

8 Temperature reduction 13.7 16.6 

9 Car use reduction 28.1 8.5 

10 Food waste reduction 77.4 24.1 

11 1,2,3,4 and 5 14.8 20.4 

12 1,2,3,4 and 6 14.8 20.4 

13 8, 9 and 10 35.5 2.7 

Figure 9 shows how the estimated rebound effects vary between quintiles. Two important 

observations may be made. First, rebound effects decline as total expenditures increase and 

are therefore significantly larger for low-income households. For example, the estimated 

rebound effect from measures 1-5 in combination is 20.1% for Q1 households but only 12.6% 

for Q5. This pattern also applies to the sufficiency measures, but is less pronounced when 

these measures are combined - largely because re-spending on food, domestic energy and 

vehicle fuels is disallowed.  
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Second, direct emissions form a much larger proportion of the total rebound effect for low-

income households. For example, for measures 1-5 in combination, direct emissions form 

~45.0% of the income effect for Q1 households but only ~7.2% for Q5. Since GHG-intensive 

necessities form a larger share of total expenditure for low-income households, as well as 

having a proportionately higher expenditure elasticity, they account for a larger proportion of 

total re-spending. The reverse is the case for high income households where almost all the 

rebound effect derives from embodied emissions. This indicates that confining attention to 

direct emissions would lead to an overestimate of emission savings, especially for high 

income households.  

Low income households may be expected to have the strongest financial motivation to reduce 

food waste, but our results suggest that this measure could lead to a net increase in emissions 

(‘backfire’). In practice, the actual GHG savings will be sensitive to the particular commodity 

choices made. For example, vegetarian households would have lower GHG savings from 

reducing food waste since their diet is approximately 22% less GHG intensive (Berners-Lee 

et al., 2012). If such households were to achieve comparable cost savings from reducing food 

waste, then backfire would be a likely outcome. But since vegetarian food tends to be 

cheaper, the cost savings and hence the income effect is also likely to be lower. 
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Figure 9 Estimated rebound effects by quintile – income effects alone, ignoring capital costs 
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Measures 8, 9 and 10 in combination 
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Table 7 Estimated rebound effects for an average household  

No. Measure Rebound effect 

(income effect alone) 

Rebound effect 

(income and 

embodied effects, full 

capital costs) 

Rebound effect 

(income and embodied 

effects, subsidised 

capital costs) 

1 Cavity wall 

insulation 14.5 11.6 15.2 

2 Loft insulation  14.5 5.6 23.2 

3 Condensing boiler 15.2 15.2 15.2 

4 Tank insulation  14.6 13.4 14.4 

5 CFLs 15.3 17.4 17.4 

6 LEDs 15.2 5.0 13.4 

11 1,2,3,4 and 5  14.8 12.9 16.2 

12 1,2,3,4 and 6  14.8 11.3 15.7 

Figure 10 shows how the estimated rebound effects for the efficiency measures vary between 

quintiles, both with and without allowing for subsidies (CFLs are not subsidised). The pattern 

is broadly similar to Figure 9 except for unsubsidised loft insulation and LED lighting where 

rebound effects are found to increase with total expenditure. Both these measures are 

relatively costly and for low income households, whose expenditure on domestic energy is 

smaller in absolute terms than for high income households, the capital cost significantly 

offset the energy cost savings. This picture would change if the rebound effects were 

calculated over a longer time period. Also, the variance in emissions both within and between 

quintiles (Figure 5) makes it likely that rebound effects will vary widely from one household 

to another. 
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Figure 10 Estimated rebound effects for the efficiency measures by quintile  
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Measures 1, 2, 3, 4 and 6 in combination 

 

 

 

 

 

6 Discussion 

The main conclusions of the above analysis are as follows. First, rebound effects appear to be 

fairly modest (0-32%) for measures affecting domestic energy use, larger (25-65%) for 

measures affecting vehicle fuel use and very large (66-106%) for measures that reduce food 

waste. Second, indirect rebound effects contribute most to these results, with the overall 

effect being dominated by the embodied emissions of non-energy goods and services. Third, 
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category, as well as measures that are subsidised in some way, may be associated with larger 

rebound effects (although the source of the subsidies must also be taken into account). We 

first discuss the robustness of these findings and then highlight some relevant implications. 
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should not bias our results. Also, we improve upon earlier studies by allowing for the 

emissions associated with government spending of product taxation revenues and the 

variation in that taxation between product categories.  

Our use of only 16 categories of household expenditure obscures the variations in the price, 

quality and GHG intensity of goods within each expenditure category and implicitly assumes 

that all households purchase the same priced goods (Girod and de Haan, 2009). If, as seems 

likely, high income households purchase higher-priced goods (at least in some categories), 

our methodology could overestimate their expenditure elasticities. Similarly, if low-income 

households purchase lower-priced goods, our methodology could underestimate their 

expenditure elasticities. This in turn would bias our results.  

In practice, however, the potential size and direction of this bias is difficult to assess. For 

example, low income households in the UK typically pay higher prices for domestic energy, 

since they are more likely to use prepayment meters and less likely to either pay by direct 

debit or to switch suppliers. As a result, our methodology may overestimate energy-related 

emissions for those households and hence overestimate the engineering savings from 

efficiency improvements. At the same time, it may underestimate the cost savings from such 

measures and hence underestimate the income effect. In combination, this implies that we 

may be underestimating the rebound effect for low-income households. More generally the 

GHG intensity of different goods within each category may vary widely and these variations 

may or may not be correlated with the prices of those goods. This in turn could contribute to 

wide variations in the GHG emissions of households with comparable levels of expenditure. 

The manner in which such factors affect rebound effects deserves further exploration. 

A key limitation of this study is that we only capture the income effects of energy efficiency 

improvements and not the substitution effects. To appreciate this distinction, consider a 
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household that installs loft insulation and recovers the capital costs over ten years through 

lower heating bills. The income effect is zero over this period, since the bill savings exactly 

offset the capital costs. Assuming, for illustration, that the embodied effect is zero as well, 

our methodology would estimate a zero rebound effect over this period (and a negative 

rebound effect for periods less than 10 years). But since the unit cost of heating has fallen 

relative to that of other goods and services, the household is likely to consume more heating 

and fewer goods and services that are ‘substitutes’ to heating. At the same time, the 

household may consume more of other goods and services that are ‘complements’ to heating. 

The net result will be a shift in consumption patterns and hence a change in the household’s 

total GHG emissions. In practice, we would expect substitution towards heating and away 

from other goods and services and since the former is more GHG intensive than the latter, the 

net result is likely to be an increase in GHG emissions and hence a positive rebound effect. 

More generally, the rebound effect will be given by the sum of income and substitution 

effects for all commodities and is likely to be greater than that from income effects alone. 

Hence, by neglecting substitution effects, we suspect our methodology may be systematically 

underestimating rebound effects.17 

A second limitation derives from our use of a static input-output model that neglects price 

changes and relies upon numerous simplifying assumptions such as constant returns to scale 

and Leontief (fixed proportions) production functions. As a consequence, we cannot capture 

any supply-side responses to improved energy efficiency which may modify the size of the 

estimated effects. For example, reduced energy demand may lower energy prices, thereby 

triggering increased consumption and larger rebound effects. Alternatively, such reductions 

may lead to ‘disinvestment’ in the upstream energy industry which may contribute to smaller 

rebound effects (Anson and Turner, 2009). The use of CGE models to more fully capture 

such mechanisms should be a priority for future research. However, input-output models have 
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the advantage of simplicity and transparency and can still deliver useful insights - particularly 

when the use of a multiregional framework permits accurate estimation of the emissions 

embodied in traded goods. 

6.2 Implications of the results 
Our results demonstrate the importance of accounting for rebound effects within policy 

appraisals. This applies across the board, but is particularly important for low income groups 

for whom rebound effects are generally larger. Our results also demonstrate that both direct 

and indirect rebound effects need to be accounted for. This is especially important for high 

income groups who have a higher proportion of rebound as embodied emissions, much of 

which occurs beyond national borders. Failure to take account of these effects in policy 

appraisals will lead to an overestimate of energy and emission savings, in some cases by a 

significant amount. Also, the variation in the nature and scale of rebound effects between 

income groups should be considered when policies are targeted. 

Our results also have implications for the design of carbon pricing schemes. Such schemes 

need to incentivise efficiency improvements and behavioural change, while at the same time 

mitigating any associated rebound effects and protecting low-income groups. This is best 

achieved by economy-wide schemes with revenue recycling that incorporate border carbon 

adjustments to capture the emissions embodied in traded goods (Monjon and Quirion, 2010; 

van Asselt and Brewer, 2010). Our results demonstrate that expenditure by low-income 

households is comparatively GHG intensive while their total GHG emissions are dominated 

by domestic energy (Figure 8). This suggests that carbon pricing confined to domestic energy 

could be regressive without carefully targeted compensation. Such a scheme would also fail 

to capture the bulk of emissions from high-income households, the majority of which are 

embodied in the goods and services they consume.  



48 

The case for economy-wide carbon pricing is reinforced by the observation that taxing energy 

commodities leads to larger rebound effects. Specifically, we found that measures affecting 

vehicle fuels led to larger rebound effects than measures affecting domestic energy, primarily 

because the former were more heavily taxed. High taxation means that a unit reduction in 

consumption leads to greater cost savings and re-spending of those cost savings leads to a 

larger rebound effect. The paradox is that higher taxation also provides a stronger incentive to 

reduce consumption of energy commodities and hence to reduce the associated direct 

emissions. The net impact will depend upon a number of variables including the own price 

elasticity of the relevant energy commodities, the GHG intensity of expenditure on that 

commodity relative to other goods and services and any supply-side responses.  

This problem may be reduced if the carbon taxation was economy-wide. This would raise the 

price of all goods and services in proportion to their carbon intensity, and thereby lower the 

GHG intensity of expenditure (in tCO2e/£) of those goods and services. It would also provide 

incentives to reduce both household emissions and the GHG emissions associated with 

manufactured goods. The net result should be to reduce the size of the indirect rebound effect 

- although the precise implications require investigation with a macroeconomic model. But to 

be fully effective such a scheme would also need to capture the emissions embodied in 

imported goods. While mechanisms such as border carbon adjustments are feasible, they 

present considerable legal and practical challenges and may capture only small proportion of 

the relevant emissions. Ultimately, this form of ‘carbon leakage’ can only be adequately 

addressed through the development of international climate agreements that cover a 

significant proportion of global emissions. 

Carbon pricing is not the only means to mitigate rebound effects however. The wide variation 

in GHG emissions between households with comparable levels of expenditure (Figure 5) 
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indicates the potential for voluntarily shifting consumption patterns towards lower carbon 

options - such as reducing air travel or putting savings towards low carbon investments. 

While all the measures considered here are necessarily associated with rebound effects, the 

magnitude of these effects may vary widely from one household to another depending upon 

their particular pattern of re-spending. Hence, existing policy approaches that target barriers 

to energy efficiency could usefully be complemented by parallel measures that incentivise 

and facilitate households in making lower carbon choices in all areas of consumption. 

Finally, it is essential to recognise that all of the measures considered here will improve 

consumer welfare and (except in particular cases) reduce aggregate emissions. Hence, such 

measures should continue to be encouraged. What needs to change are our estimates of the 

emission reductions that such measures will achieve.  

7 Summary 

This study adds to a small but growing volume of evidence that estimates combined direct 

and indirect rebound effects for households. Our modelling indicates that such effects are 

modest (0-32%) for measures affecting domestic energy use, larger (25-65%) for measures 

affecting vehicle fuel use and very large (66-106%) for measures that reduce food waste. Our 

approach only captures a subset of the relevant mechanisms and may underestimate the total 

effect. We also find that measures undertaken by low income households are associated with 

larger rebound effects and measures that are subsidised or affect highly taxed energy 

commodities may be less effective in reducing aggregate emissions. While the results do not 

undermine the rationale for energy efficiency policy, they do highlight the importance of 

allowing for rebound effects within policy appraisals, as well as reinforcing the case for 

economy-wide carbon pricing. 
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Annex A – Details of methodology 

Estimating the engineering effect 

We estimate the engineering effect of the domestic energy measures (1-6 and 8) with the help 

of the CDEM. This simulates the energy consumption of the English dwelling stock through 

modelling the behaviour of 47 different dwelling types. We first used the model to estimate 

the annual energy consumption of English households by year (t=1 to T) and energy carrier (f 

- gas, heating oil, solid fuels, electricity) and then divide by the total number of households to 

give the average annual household consumption of each energy carrier ( ftE ). We then model 

the adoption of the relevant measure by all eligible households (which may be a subset of the 

total) and re-estimate the average household consumption of each energy carrier ( ftE ' ) - 

assuming that consumption of the relevant energy service remains unchanged in the case 

measures 1-6 and falls in the case of measure 8. The estimated fractional change in the 

average annual household consumption of energy carrier f as a result of the measure is then: 

ft

ftft

ft

ft

E
EE

E
E −

=
Δ '

         (13) 

With this approach, the estimated energy savings are averaged over all households but only a 

portion may be eligible for and hence benefiting from the relevant measure (e.g. not all 

dwellings have cavity walls). This means that, in percentage terms, the estimated average 

energy savings may be less than would be obtained for an individual household undertaking 

the measure, but are representative of the percentage energy savings achievable from the 

measure by English households as a whole. Similarly, while individual households may only 

use a single energy carrier (f) for heating, the energy savings are averaged over the mix of all 
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energy carriers used in English households. We take these figures as representative of UK 

households. 

We then use these estimates to adjust our estimates of the GHG emissions associated with 

expenditure on gas, other fuels and electricity (l) by households within each quintile ( j
ltH ). 

We derive the latter as follows: 

j
ltlt

j
lt XuH =           (14) 

Where l = gas, electricity and other fuels; j
ltX  (in £) is the mean equivalised expenditure on 

category l in year t by households in quintile j; and ltu  (in tCO2e/£) is an estimate of the GHG 

intensity of this expenditure in 2004, derived from SELMA. This process involves translating 

estimates for the four energy carriers (f) used by the CDEM into estimates for the three 

relevant expenditure categories (l) used by SELMA.  

By proceeding in this way, we ensure that our estimates of the engineering effect are 

consistent with our estimates of the income effect which rely upon the same data sources. In 

addition, this allows both saved expenditure and the engineering effect to vary between 

quintiles. The use of equivalised expenditures in Equation 14 means that j
ltH  represents 

equivalised emissions rather than actual emissions, but this does not affect our estimates of 

rebound effects since we adjust all other variables in the same way (see below). 

For households in each quintile, the estimated change in equivalised GHG emissions 

associated with consumption of gas, electricity and other fuels ( j
tHΔ ) is given by: 

∑
Δ

=Δ
l

j
lt

lt

ltj
t H

E
EH          (15) 
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The other three measures (7, 9 and 10) only affect a single expenditure category (m), namely 

vehicle fuels in the case of measures 7 and 9 and food and non-alcoholic beverages in the 

case of measure 10. For these measures, we use a simpler approach to estimate the fractional 

savings in GHG emissions from the relevant category for an average UK household ( mtp ) 

and then use this to estimate the change in equivalised GHG emissions for households in each 

quintile as follows: 

j
mtmt

j
t HpH =Δ           (16) 

Where ( 10 ≤≤ mtp ). We term j
tHΔ   the engineering effect of the measure for quintile j in 

year t.   

Estimating the embodied effect 

For the efficiency measures, we use the results of a number of LCA studies to estimate the 

GHG emissions incurred in manufacturing and supplying the relevant equipment (Chitnis et 

al., 2013). We assign these embodied emissions to the year in which the measure is installed 

and divide by the total number of dwellings to give the average household embodied 

emissions for the relevant measure ( tM ' ). We assume that the economic lifetime of each 

measure is greater than T, so the embodied emissions are only relevant for the base year (i.e. 

0' =tM  for t>1).  

Following Chitnis et al. (2013), we also estimate the average embodied emissions of the 

relevant alternative for each household ( tM ). If this alternative has an economic lifetime that 

is less than T, the measure will avoid the purchase of equipment in subsequent years, with the 

result that the embodied emissions associated with those purchases are also avoided (i.e. 
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0>tM  for some t>1). This is the case, for example, with conventional lighting which has a 

shorter lifetime than energy efficient lighting. 

The difference between these two estimates represents the incremental embodied emissions 

associated with the measure in each year. To estimate these emissions on an equivalised basis 

for each quintile, we adjust by the mean household composition in that quintile ( jn ): 

( )
j

ttj
t n

MMM −
=Δ

'
         (17) 

We term j
tMΔ  the embodied effect of the measure for quintile j in year t. 

Estimating the income effect 

In the UK, household electricity and fuel bills normally include a fixed annual charge ( fta  in 

£/dwelling/year) and a charge per unit of energy used ( ftk  in £/kWh). Efficiency and 

sufficiency improvements only affect the latter. Following Chitnis et al. (2013), we use data 

on energy consumption by fuel type for an average English household in 2009 ( ftE  in kWh) 

to estimate the percentage change in mean annual energy expenditures following the adoption 

of each of the domestic energy measures (1-6 and 8): 

)( ftftft

ftft

ft

ft

Eka
Ek

C
C

+

Δ
=

Δ          (18) 

We then map these estimates onto the corresponding expenditure categories (l= gas, 

electricity, other fuels) and estimate the change in mean annual equivalised energy 

expenditures for households in each quintile ( j
tXΔ

 
) as follows: 
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∑
Δ

=Δ
l

j
lt

lt

ltj
t X

C
CX          (19) 

For efficiency measures, we also estimate the capital cost associated with installing the 

measure in all eligible dwellings and divide by the total number of dwellings to give the 

average capital cost per household ( tK ' ). We do the same for the relevant alternative ( tK ), 

with the difference between the two representing the incremental capital cost of each measure 

in each year ( tKΔ ). The equivalised incremental capital cost for households in each quintile 

is then given by: 

( )
j

ttj
t n

KKK −
=Δ

'
         (20) 

We assume that the full capital costs are incurred in the year in which the measure is installed 

(i.e. 0' =tK  for t>1). Again, if the relevant alternative has an economic lifetime that is less 

than T, the measure avoids equipment purchases in subsequent years (i.e. 0>tK  for some 

t>1). For simplicity, we do not discount these avoided capital costs. Incremental capital costs 

are zero for the sufficiency measures (8-10) and we assume they are also zero for the fuel-

efficient car (measure 7). 

We treat the sum of the change in expenditures in the relevant categories and the net capital 

payments in a given year as analogous to a change in equivalised income for each quintile 

( j
tYΔ ): 

)( j
t

j
t

j
t KCY Δ+Δ−=Δ          (21) 
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We assume that households divide their annual disposable income between their expenditure 

on goods and services ( j
tX ) and savings ( j

t
jj

t YrS = ), where jr  is the fractional savings rate 

of quintile j:  

j
t

jj
t

j
t YrXY +=           (22)  

We use estimates of savings rates by quintile derived from the LCFS and constrain them to be 

non-negative (Crossley and O'Dea, 2010).18 While uncertain, this approach allows the 

environmental impact of savings to be incorporated within the analysis. The change in 

savings for each quintile is then given by: 

j
t

jj
t YrS Δ=Δ           (23) 

The change in mean equivalised total expenditure by households in each quintile ( j
tXΔ ) is 

then given by: 

j
t

j
I

i

j
it

j
t YrXX Δ−=Δ=Δ ∑

=

)1(
1

        (24) 

Where j
tXΔ  represents the change in equivalised expenditure on category i by quintile j. 

From consumer demand theory, the ‘adding up restriction’ leads to the so-called ‘Engel 

aggregation condition’, as follows (Deaton and Muelbauer, 1980): 

j
t

j
I

i

j
it

j
i YrX )1(

1
−=∑

=

ε          (25) 

Where j
iε  represents the expenditure elasticity of category i for households in quintile j. For 

sufficiency measures, we do not allow re-spending in the commodity categories that are 

directly affected by the relevant measure (e.g. food and non-alcoholic beverages in the case 
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of eliminating food waste). Similarly, when the sufficiency measures are combined, we do 

not allow any re-spending between the relevant categories (e.g. savings from eliminating food 

waste are not re-spent on increased driving). 

Letting stu  represent the GHG intensity of UK investment (in tCO2e/£), the mean change in 

equivalised GHG emissions for households in quintile j as a consequence of the change in 

disposable income is then given by: 

[ ] j
t

j
st

I

i

j
itit

j
t YruXuG Δ+Δ=Δ ∑

=1

        (26) 

Using the definition of expenditure elasticity, the mean change in equivalised expenditure on 

category i in year t by households in quintile j can be written as: 

j
itj

t

j
tj

i
j
it X

Y
YX Δ

=Δ ε          (27) 

Substituting j
itXΔ  from Equation 27 into Equation 26: 
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Substituting for j
tY  from Equation 25, this can also be written as: 
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We term j
tGΔ  the income effect of the energy efficiency improvement for quintile j in year t.  
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Annex B – Key assumptions 

GHG savings  

Our assumptions for the GHG savings from the domestic energy measures are derived from 

the CDEM and described in Chitnis et al (2013). For the vehicle and food measures, we 

assume the following: 

• Efficient car: Fuel efficient diesel cars such as the Audi A3 1.6 can achieve 

~100gCO2/km in test cycles, corresponding to ~115gCO2/km in real world conditions 

(DEFRA, 2012). This compares to a UK new car average in 2009 of ~172gCO2/km19 

and a fleet average of ~177gCO2/km. Hence, with no change in driving patterns, 

households that replaced a typical car with an average new car should reduce their 

vehicle fuel emissions by ~3%, while households that purchased a fuel-efficient diesel 

should instead reduce their emissions by ~35%. We take the difference between these 

two estimates (32%) as the incremental emission reductions from purchasing the latter 

instead of the former and further assume that this measure applies to the ~7% of cars 

that are scrapped and replaced in the base year. Since the average UK household owns 

1.14 cars (DfT, 2012b), this corresponds to a ~2.6% reduction in vehicle-related GHG 

emissions for an average household. We use this to adjust our estimates of the 

emissions associated with vehicle fuel consumption for each quintile – which in turn 

reflect differing levels of car ownership and use within each quintile.   

• Reducing car use: Some 22% of UK car trips are of less than two miles and these are 

estimated to account for ~3% of total car mileage and ~4.9% of total car emissions 

(DfT, 2012a).20 We use the latter figure to adjust our estimates of the emissions 

associated with vehicle fuel consumption for each quintile. 
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• Eliminating food waste: Quested and Parry (2011) estimate that the average UK 

household throws away 18% of its food and drink purchases, and that 12% of this 

waste is avoidable. To a first approximation, eliminating this avoidable waste should 

reduce the embodied emissions associated with food consumption by 12% as well.21 

We use this figure to adjust our estimates of the emissions associated with food and 

non-alcoholic beverages consumption by each quintile. 

The results are summarised in Table A.1. 
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Table A.1 Estimated percentage change in GHG emissions by category following the 

adoption of each measure by an ‘average’ UK household over a period of 10 years 

No. Measure Gas Electricity Other 

fuels 

Vehicle 

fuels 

Food  

1 Cavity wall 

insulation 

-8.8 -1.7 

-7.2 

- - 

2 Loft insulation  -2.2 -0.5 -2.3 - - 

3 Condensing boiler -11.8 0.6 -0.1 - - 

4 Tank insulation  -1.8 -1.6 -1.9 - - 

5 CFL lighting 0.9 -4.5 0.9 - - 

6 LED lighting 1.1 -5.4 1.0 - - 

7 Efficient car - - - -2.6 - 

8 Temperature 

reduction 

-9.4 -2.0 -10.5 - - 

9 Car use reduction - - - -4.9 - 

10 Food waste 

reduction 

- - - - -12.0 

11 1,2,3,4 and 5  -22.4 -7.6 -10.6 - - 

12 1,2,3,4 and 6  -22.2 -8.5 -10.4 - - 

13 8, 9 and 10 -9.4 -2.0 -10.5 -4.9 -12.0 

Note: Estimates refer to an average household with a mean level of equivalised total expenditure. 
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Embodied emissions  

Table A.2 Estimated incremental embodied emissions associated with implementing each 

measure in an average household over a period of 10 years 

No. Measure Embodied emissions (kgCO2e) 

1 Cavity wall insulation 55.2 

2 Loft insulation 118.3 

3 Condensing boiler - 

4 Tank insulation 2.3 

5 CFLs 2.6 

6 LEDs 24.5 

7 Efficient car 0 

8 Temperature reduction 0 

9 Car use reduction 0 

10 Food waste reduction 0 

11 1,2,3,4 and 5 178.4 

12 1,2,3,4 and 6 200.3 

13 8, 9 and 10 0 

Note: Estimates for an average household are derived by estimating the incremental embodied emissions 

associated with all eligible households adopting the measure, dividing by the total number of households 

and then dividing by the mean equivalised size of UK households (Table 4).  
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Cost savings  

Our assumptions for the cost savings from measures 1-6 are derived from the CDEM and 

described in Chitnis et al (2013). For the other measures, we assume that reducing food waste 

will reduce food-related expenditure by 12%, reducing car use will reduce expenditure on 

vehicle fuels by ~4.9% and purchasing a fuel-efficient car will reduce expenditure on vehicle 

fuels by ~35% relative to purchasing an average new car.22 Since we assume that only 7% of 

the car stock is replaced, this leads to a ~2.8% reduction in expenditure on vehicle fuels for 

an average household. There will also be additional savings on vehicle excise duty, since low 

emission vehicles (<100gCO2/km) are exempt. Allowing for this increases the total annual 

cost savings by some 36%. The resulting assumptions are summarised in Table A.2. 

Table A.3 Estimated percentage change in annual expenditure by category following the 

adoption of each measure by an average UK household over a period of 10 years 

No. Measure Gas Electricity Other 

fuels  

Vehicle 

fuels 

Food 

1 Cavity wall insulation -7.7 -1.5 -7.1 - - 

2 Loft insulation  -1.9 -0.4 -2.3 - - 

3 Condensing boiler -10.3 0.6 -0.1 - - 

4 Tank insulation  -1.5 -1.5 -1.8 - - 

5 CFLs 0.8 -4.1 0.8 - - 

6 LEDs 1.0 -5.0 1.0 - - 

7 Efficient car    -2.8  

8 Temperature reduction -8.2 -1.9 -10.5 - - 

9 Car use reduction    -4.9  

10 Food waste reduction     -12 

11 1,2,3,4 and 5  -19.4 -7.0 -10.5 - - 

12 1,2,3,4 and 6  -19.3 -7.8 -10.4 - - 
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13 8, 9 and 10 -8.2 -1.9 -10.5 -4.9 -12 

Note: Estimates refer to an average household and are derived by estimating the emission reductions 

associated with all eligible households adopting the measure and dividing by the total number of 

households. 
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Capital costs 

Estimates of the incremental capital cost of each measure, with and without subsidies, are 

summarised in Table A.3. These represent the difference between the capital cost of the 

measure and the capital cost (if any) of the relevant counterfactual, such as continuing to use 

existing lightbulbs. The estimates for the domestic energy measures are based upon 

information provided by DECC (2010b) and described in Chitnis et al (2013). For simplicity, 

we assume that the incremental capital cost of a fuel-efficient diesel car is zero, although 

since such cars tend to be smaller, lighter and have fewer features, the incremental cost could 

be negative. As a result, our estimate of the rebound effect for this measure may be 

conservative. 

Table A.4 Estimated incremental capital cost associated with implementing each measure in 

an average UK household over a period of ten years 

No. Measure Capital cost without subsidy  Capital cost with subsidy  

1 Cavity wall insulation 179 41 

2 Loft insulation  235 54 

3 Condensing boiler 0 0 

4 Tank insulation  18 6 

5 CFLs 58 58 

6 LEDs 253 127 

7 Efficient car 0 0 

8 Temperature reduction 0 0 

9 Car use reduction 0 0 

10 Food waste reduction 0 0 

11 1,2,3,4 and 5  409 80 

12 1,2,3,4 and 6  605 149 

13 8, 9 and 10 0 0 
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Note: Estimates for an average household are derived by estimating the capital costs associated with all 

eligible households adopting the measure, dividing by the total number of households and then dividing 

by mean equivalised size of UK households (Table 4). The with-subsidies estimates take into account the 

level of CERT subsidies available for different socio-economic groups, as well as the proportion of 

installations expected within each.  
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GHG intensities, expenditure shares and share of GHG emissions 

Table A.5 GHG intensities, expenditure shares and share of GHG emissions by category for 

an average household  

No. Description GHG 

intensity 

(kgCO2e/£) 

( itu )  

GHG 

intensity 

as % of 

gas 

Expenditure 

share in 

2009 (%) 

( XXi / ) 

GHG 

emissions 

as % of 

total  

( HHi / ) 

1 Food & non-alcoholic 

beverages 

 

1.05 22.4 13.9 12.9 

2 Alcohol and tobacco 0.26 5.6 3.1 0.7 

3 Clothing & footwear 0.54 11.5 5.4 2.6 

4 Electricity 5.04 107.1 2.8 12.5 

5 Gas 4.70 100.0 2.5 10.5 

6 Other fuels 6.95 147.8 0.6 3.9 

7 Other housing 0.28 6.0 9.2 2.3 

9 Furnishings etc. 0.75 16.0 7.6 5.0 

9 Health 0.35 7.4 1.5 0.5 

10 Vehicle fuels and 

lubricants 

2.61 

55.5 5.0 11.5 

11 Other transport 1.25 26.7 10.0 11.0 

12 Communication 0.43 9.2 3.1 1.2 

13 Recreation & culture 0.65 13.8 15.2 8.7 

14 Education 0.25 5.4 1.4 0.3 
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15 Restaurants & hotels 0.59 12.5 9.7 5.0 

16 Miscellaneous  0.52 11.1 9.1 4.2 

 Saving 0.57 12.1 - 7.4 

  



68 

Estimated effects 

Table A.6 Estimated engineering, embodied, income and total effects (ignoring capital cost) 

for an average household (percentage of baseline GHG emissions) 

No. Measure Engineering 

effect  

Embodied 

effect  

Income effect  Net effect 

1 Cavity wall insulation -1.4% 0.025% 0.2% -1.18% 

2 Loft insulation  -0.4% 0.053% 0.1% -0.27% 

3 Condensing boiler -1.2% - 0.2% -1.00% 

4 Tank insulation  -0.5% 0.001% 0.1% -0.39% 

5 CFL lighting -0.4% 0.001% 0.1% -0.37% 

6 LED lighting -0.5% 0.011% 0.1% -0.43% 

7 Efficient car -0.3% - 0.1% -0.16% 

8 Temperature reduction -1.6% - 0.2% -1.42% 

9 Car use reduction -0.6% - 0.2% -0.41% 

10 Food waste reduction -1.5% - 1.2% -0.35% 

11 1-5  -3.7% 0.080% 0.6% -3.08% 

12 1-4 and 6  -3.8% 0.090% 0.6% -3.15% 

13 8, 9 and 10 -3.8% - 1.3% -2.42% 
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Engel curves 

Table A.7 Estimated Working Leser Engel curves for whole sample in 2009 

Category 
iα  iβ  iγ  2R  

Food & non-

alcoholic 

beverages 

0.57 

(41.84)* 

-0.09   

(-36.78)* 

0.0009 

(13.89)* 

0.32 

Alcoholic 

beverages & 

tobacco  

0.11 

(12.33)* 

  -0.01 

(-8.64)* 

-0.0001 

(-3.10)* 

0.02 

Clothing & 

footwear 

-0.01 

(-1.58) 

0.02 

(11.47)* 

-0.0004 

(-7.72)* 

0.04 

Electricity 0.16 

(24.66)* 

-0.03 

(-23.45)* 

0.0003 

(10.57)* 

0.23 

Gas 0.12 

(18.61)* 

-0.02  

(-17.60)* 

0.0004 

(10.77)* 

0.13 

Other fuels 0.01 

(1.52) 

-0.001 

(-1.95)* 

0.0002 

(5.97)* 

0.01 

Other housing 0.33 

(17.64)* 

-0.03 

(-10.43)* 

-0.001 

(-9.83)* 

0.03 

Furnishings -0.12 

(-8.07)* 

0.03 

(11.39)* 

0.0006 

(7.15)* 

0.04 

Health -0.04  

(-6.23)* 

0.01   

(6.47)* 

0.0003 

(7.68)* 

0.02 

Vehicle fuels & 

lubricants 

0.02 

(2.97) 

0.01 

(6.39)* 

-0.0002 

(-3.88)* 

0.01 

Other transport -0.17 0.05 -0.0005 0.09 
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(-11.16)* (19.90)* (-5.50)* 

Communication 0.14 

(25.24)* 

-0.02   

(-20.98)* 

-0.0001 

(-2.15)* 

0.12 

Recreation & 

culture 

-0.12 

(-6.31)* 

0.04 

(12.91)* 

0.0005 

(5.82)* 

0.04 

Education -0.05 

(-7.09)* 

0.01 

(8.61)* 

-0.0002 

(-5.12)* 

0.03 

Restaurants and 

hotels 

-0.003 

(-0.21) 

0.02 

(10.79)* 

-0.0005 

(-7.42)* 

0.04 

Miscellaneous 

goods & services 

0.04   

(3.68)* 

0.01   

(3.91)* 

-0.00001   

(-0.11) 

0.004 

Notes: Estimated with OLS over the full sample of households using ‘White heteroskedasticity-consistent 

standard errors & covariance’ to correct for heteroskedasticity. The t-statistics for each parameter are shown in 

parenthesis, with single asterisk indicating the estimate is significant at the 5% probability level.  
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Endnotes 

                                                
1 Emissions from electricity consumption are commonly labelled as direct, although they occur at the power 

station. 

2 The GHG intensity of a category is estimated from the GHG emissions associated with that category in 2004 

(obtained from SELMA) divided by ‘real’ expenditure on that category in 2004 – taking 2009 as the reference 

year for real expenditure. The exception is electricity where emissions are estimated from 2009 electricity 

consumption (in kWh) multiplied by an emission factor for 2009 (kgCO2e/kWh). 

3 Engel curves have been estimated using a wide range of functional forms which may be more or less consistent 

with the data in different circumstances (Haque, 2005; Prais and Houthakker, 1955). The chosen form should 

allow for saturation in demand for a category as expenditure increases, as well as satisfying the ‘adding-up 

restriction’ (i.e. the sum of expenditures on each category must equal the total expenditure) and providing the 

best statistical fit. But single functional forms rarely satisfy all three requirements simultaneously, with the fit 

frequently being poorer for extreme values of expenditure (Haque, 2005). 

4 Defined as the person who pays the mortgage or rent or, if this is paid jointly, the person with the highest 

income. 

5 Murray (2013) criticises Druckman et al (2011) for allowing re-spending on the categories that are the target 

of the sufficiency measure(s). But this is incorrect. Druckman et al do not allow this form of re-spending and we 

do not do so here. 

6 Not all households are eligible for each measure. For example a dwelling without cavity walls cannot have 

cavity wall insulation. 

7 As a consequence, scrapping an existing car before the end of its natural life and replacing it with a fuel-

efficient model may lead to little or no emission reductions, even if driving patterns remain unchanged. 

8 An alternative approach would be to model household savings as deferred consumption. In either case, the 

purpose of including savings is to explicitly highlight their consequences for GHG emissions. 
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9 Environmentally-Extended Input-Output (IO) models such as SELMA only include the GHG emissions 

associated with each expenditure category. But expenditures on different commodities include various taxes 

(such as Value Added Tax - VAT) which in turn are used to fund government expenditure. Since government 

spending is a separate category in the national accounts, the associated GHG emissions are normally excluded 

from the estimated GHG intensities of household expenditure. Exclusion of these emissions could bias estimates 

of the rebound effect, in particular because differing levels of product taxation are applied to different goods and 

services. For example, in the UK there is 20% VAT on most goods and services; 5% VAT on electricity, gas 

and other fuels; zero rate VAT on most food products; and around 65% taxation on vehicle fuels. To eliminate 

this potential bias we: first, estimate the GHG intensity of UK government expenditure in the base year; second, 

use this to estimate the GHG emissions associated with taxation in each category; and third, add these to the 

emissions provided by SELMA for each expenditure category. This in turn leads to an adjusted GHG intensity 

of expenditure for each category which is used in the calculation of rebound effects. As the GHG intensity of 

government expenditure is relatively low, this adjustment does not significantly change our estimates of rebound 

effects. 

10 White test showed that heteroskedasticity could not be rejected for all the estimated Engel curves. Hence, 

White heteroskedasticity-consistent estimator was used to correct the standard errors for heteroskedasticity. 

11 We also estimated the Double Semi-Log (DSL) functional form: iiiiii HRPXXX ωρϕθλ ++++= ln  - 

where iλ , iθ , iϕ  and iρ are parameters and iω  is the error term (Haque, 2005). This gave comparable 

elasticities to the WL over the whole sample, but the differences were more pronounced for individual quintiles. 

Since the DSL estimation results were less satisfactory in terms of statistical significance and expected signs, we 

only report the WL results here.  

12 The emission savings from combining measures may not be additive – for example, installing insulation 

reduces the savings achievable from reducing internal temperatures, while installing energy-efficient lighting 

leads to an additional demand for heating fuels in order to compensate for the lost heat from traditional 

lightbulbs. We use the CDEM to model these effects.  
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13 Defined here as those categories whose estimated expenditure elasticity is less than unity: i.e. electricity, gas, 

other fuels, food & non-alcoholic beverages, alcoholic beverages and tobacco, other housing and 

communications. 

14 UK electricity generators are participating in the EU ETS and hence are covered by an EU wide carbon cap. 

In this context, any actions that reduce carbon emissions from UK electricity generators, including 

improvements in household electricity efficiency, will not reduce global carbon emissions at all. This is because 

such actions will simply free up allowances that could be used by other participants in the EU ETS to cover 

either increases in emissions or reduced emissions abatement (Sorrell and Sijm, 2003). Alternatively, the 

allowances may be banked and used in subsequent trading periods, but they will still ultimately be used to cover 

emissions. Hence, from this perspective, the engineering effect of electricity efficiency improvements is zero 

while the EU ETS cap is in place. As a result, improvements in electricity efficiency already increase aggregate 

GHG emissions as a consequence of the embodied and income effects. 

15 The direct rebound effect is zero for the sufficiency measures since re-spending in the relevant categories is 

disallowed. Also, our methodology does not permit the straightforward isolation of the direct rebound effect for 

the domestic energy measures owing to the way different energy carriers are treated. So for example, we model 

the income effect for electricity consumption following the installation of energy-efficient lighting, but we 

cannot easily distinguish between increased use of electricity for lighting and increased use of electricity for 

other purposes - including heating. 

16 In practice, only a portion of households benefit from subsidies and these are funded through higher energy 

bills for all household consumers (Sorrell et al., 2009b). For example, DECC (2010a) estimates that CERT 

raised household gas prices by 2.8% in 2010 and household electricity prices by 3.3%. These energy price 

increases will reduce real household incomes and expenditures and hence reduce both energy-related and total 

GHG emissions. As a result, the positive income effect from the energy efficiency improvements will be offset 

by a negative income effect from the energy price rises - for both participants and non-participants in CERT 

(Sorrell et al., 2009b). To properly account for this, it would be necessary to estimate the proportional 

contribution of each measure to the overall increase in energy prices. 
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17 This potential source of bias may help explain the differences between our results and several studies of direct 

rebound effects from improved insulation (Boardman and Milne, 2000; Guertin, 2003; Nesbakken, 2001; 

Sanders and Philipson, 2006). These often find that low-income households have larger rebound effects since 

they are further from satiation in their consumption of heating services (Hong et al., 2006; Madlener and 

Hauertmann, 2011; Sorrell, 2007). In particular, many UK households live in excessively cold conditions and 

take much of the benefit of such improvements in the form of increased comfort rather than lower bills (Sanders 

and Philipson, 2006). While our study confirms the general finding of higher direct rebound effects for such 

groups, our estimates appear relatively low - indeed, our estimates of the total rebound effect from these 

measures are lower than some estimates of the direct rebound effect alone. This may be because our 

methodology only captures a subset of the relevant mechanisms. 

18 Our assumptions are based on Crossley and O’Dea (2010) as follows: Q1 = 0%; Q2 = 9%; Q3 = 15%; Q4 = 

20%; Q5 = 30%. Saving is calculated as income minus expenditure, and the saving rate as saving divided by 

income. However, this calculation is inaccurate because LCF income excludes key categories such as 

withdrawal of savings, loans, receipts from maturing insurance policies and proceeds from the sale of assets. 

Since recorded expenditure reflects these items, there is no reason why income and expenditure should balance. 

In practice, measured expenditure exceeds measured income at the bottom end of the income distribution. 

19 Test cycle emissions for new diesel cars averaged 149.9gCO2/km in 2009, while those for new petrol cars 

averaged 149.5gCO2/km. We apply an uplift factor of 15% to estimate emissions under ‘real-world’ driving 

conditions (DEFRA, 2012) and assume UK averages are the same as GB. 

20 This allows for the slower average speeds and cold start penalty associated with short journeys (DfT, 2008) 

21 In practice, the GHG intensity of the food most commonly thrown away may be higher or lower than the 

average GHG intensity of the food and non-alcoholic beverages category (WRAP, 2009, 2010). 

22 Assuming: a) average fuel efficiencies of 6.5 l/100km, 5.7 l/100km and 4 l/100km for new petrol, diesel and 

fuel-efficient diesel cars respectively; b) a 50:50 split between petrol and diesel in new car purchases; c) average 

2009 fuel prices of £1.29/litre for petrol and £1.26/litre for diesel; d) an average of 1.14 cars per household; and 

e) replacement of 7% of the current vehicle stock. Households purchasing a new fuel-efficient diesel would 

reduce expenditure on vehicle fuels by ~37.5% compared to an average existing vehicle and by ~35% compared 
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to an average new vehicle. We scale the latter figure to reflect our assumption that only 7% of the stock is 

replaced. 


