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The Sustainable Lifestyles Research Group (SLRG) is a multi-centre research network 
collaborating to further understanding of the opportunities and constraints on sustainable living in 
the UK. The SLRG is coordinated from the University of Surrey, and brings together project teams 
from Surrey’s Centre for Environmental Strategy (CES) and Departments of Sociology and 
Psychology. It also includes teams at other internationally acclaimed research centres: the 
University of Sussex’s Science Policy Research Unit; the Institute for Fiscal Studies; the University 
of Edinburgh; the University of Bath; and Brunel University.  

SLRG is directed by Professor Tim Jackson, Professor of Sustainable Development at the 
University of Surrey, with Professor Andy Stirling of the University of Sussex as deputy director. 
The network is coordinated by Ian Christie, research fellow at CES. 

Funded by the Department for Environment, Food and Rural Affairs (Defra), the Scottish 
Government and the Economic and Social Research Council (ESRC), SLRG builds on the 
pathbreaking research of the University of Surrey’s previous Research, ESRC-funded programme 
RESOLVE – Research on values, lifestyles and environment, also directed by Professor Tim 
Jackson.  SLRG works in partnership with its sister programme the Sustainable Practices Research 
Group (SPRG), funded by the ESRC and coordinated by Professor Dale Southerton at the 
University of Manchester.  

SLRG and SPRG aim to document and analyse the complex links between lifestyles, consumption, 
everyday practices, values and the transition to sustainable ways of life. While SPRG focuses on 
particular consumption practices and technologies, SLRG’s projects examine the lifestyles of 
households and communities and model the implications of consumption choices and values.  

The working papers in this series reflect the outputs, findings and recommendations emerging from 
a truly inter-disciplinary research programme arranged around four thematic research strands: 

Moments of transition: in-depth quantitative and qualitative research with households to understand 
the values, attitudes and habits informing their lifestyles, and to assess the impact of moments of 
major change - moving house, the arrival of the first child, and retirement - on habits and 
aspirations. 

Community and lifestyle change: studies of sustainable lifestyle change and innovations at the level 
of communities, focusing on remote rural localities in Scotland and on civil society initiatives for 
food growing and local resilience in England.  

Economic modelling of lifestyle change: studies focusing on the size and nature of rebound effects 
in energy use that could reduce or cancel out the gains from energy efficiency advances; and on 
the price responsiveness of consumption in relation to energy and sustainably produced foodstuffs. 

Synthesis of research and implications for policy : workshops and papers seeking to integrate 
findings and concepts across the suite of SLRG and SPRG projects; and research into the 
relationship of research evidence on sustainable living to policy development.  
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Abstract 
 
Energy efficiency improvements by households lead to rebound effects that offset the 
potential energy and emissions savings. Direct rebound effects result from increased 
demand for cheaper energy services, while indirect rebound effects result from increased 
demand for other goods and services that also require energy to provide. Research to date 
has focused upon the former, but both are important for climate change. This study 
estimates the combined direct and indirect rebound effects from seven measures that 
improve the energy efficiency of UK dwellings. The methodology is based upon estimates of 
the income elasticity and greenhouse gas (GHG) intensity of 16 categories of household 
goods and services, and allows for the embodied emissions of the energy efficiency 
measures themselves. Rebound effects are measured in GHG terms and relate to the 
adoption of these measures by an average UK household. The study finds that the rebound 
effects from these measures are typically in the range 5-15% and arise mostly from indirect 
effects. This is largely because expenditure on gas and electricity is more GHG-intensive 
than expenditure on other goods and services. However, the anticipated shift towards a low 
carbon electricity system in the UK may lead to much larger rebound effects.  

 
 

Keywords: Rebound effect; Sustainable consumption; Income effects; Re-spending 

 
 
 
 

1 Introduction 

Global efforts to reduce greenhouse gas (GHG) emissions rely heavily upon improving 
energy efficiency in all sectors of the economy. For example, the ambitious ‘450 scenario’, 
published by the International Energy Agency (IEA) anticipates energy efficiency delivering 
as much as 71% of the global reduction in carbon dioxide emissions in the period to 2020, 
and 48% in the period to 2035 (IEA, 2010). The technical and economic opportunities to 
improve energy efficiency are particularly large in the built environment which is 
consequently the target of multiple policy interventions. But the energy and GHG savings 
from such improvements may frequently be less than simple engineering estimates suggest 
as a consequence of various rebound effects. Despite a growing literature on the nature and 
magnitude of these effects, they continue to be overlooked by governments and international 
organisations such as the IEA. 
 
‘Rebound effects’ is an umbrella term for a variety of behavioural responses to improved 
energy efficiency. For households, these are commonly labelled as either direct or indirect. 
Direct rebound effects derive from increased demand for the, now cheaper, energy services 
such as heating, lighting or car travel. For example, compact fluorescents make lighting 
cheaper, so people may choose to use higher levels of illumination or not switch lights off in 
unoccupied rooms. In contrast, indirect rebound effects derive from increased demand for 
other goods and services (e.g. leisure, clothing) that also require energy and GHG emissions 
to provide. For example, the cost savings from more energy efficient lighting may be put 
towards an overseas holiday. As Figure 1 illustrates, this type of behaviour can be 
deliberately encouraged! 
 
Direct rebound effects increase energy use and GHG emissions (relative to a baseline) of 
the household that benefits from the energy efficiency improvement, while indirect rebound 
effects increase energy use and GHG emissions (relative to a baseline) from the household, 
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from elsewhere in the economy and/or from overseas. Energy efficiency improvements such 
as purchasing energy efficient lighting lead to both direct and indirect effects, while energy-
saving behavioural changes, such turning lights off, only lead to indirect effects. 
 
 

  
Figure 1 Encouragement of rebound effects 

 
 
As described in Annex I, both direct and indirect rebound effects may theoretically be 
decomposed into income and substitution effects. By making energy services cheaper, 
energy efficiency improvements increase the real income of households, thereby permitting 
increased consumption of all goods and services and increased ‘utility’ or consumer 
satisfaction. This is termed the income effect. But since energy services are now cheaper 
relative to other goods and services, households may shift their consumption patterns even if 
their real income and hence utility was held constant. For example, they may substitute 
increased car travel for reduced use of public transport. This is termed the substitution effect. 
The direct rebound effect represents the net result of the income and substitution effects for 
the relevant energy service, while the indirect rebound effect represents the net result of 
income and substitution effects for all the other goods and services purchased by the 
household. Income and substitution effects may either reinforce or offset each other.  
 
Quantifying rebound effects is challenging, owing to inadequate data, uncertain causal 
relationships, trans-boundary effects and other difficulties (Sorrell, 2007). As a result, the 
existing literature is patchy and largely confined to direct rebound effects for a limited range 
of energy services for OECD households – most commonly, car travel in the US (Sorrell, 
2007). Studies estimating both direct and indirect effects for households are rare and have 
produced a wide range of results (Table 1). These studies typically combine estimates of the 
energy consumption and/or GHG emissions associated with different categories of 
household goods and services, with estimates of how the share of expenditure on these 
goods and services varies as a function of prices, income and other variables. The former 
are derived from a combination of Environmentally-Extended Input-Output models and Life 
Cycle Analysis (LCA), while the latter are derived from the econometric analysis of survey 
data on household expenditure.  
 
As indicated in Table 1, existing studies vary widely in the categories used for classifying 
household expenditures and the types of actions investigated. While most focus upon 
improving energy efficiency in electricity, heating or personal travel, others examine 
behavioural change in those areas, such as reducing car travel, or broader actions such as 
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reducing food waste. Rebound effects have been estimated in energy, carbon and GHG 
terms, but no study estimates and compares all three. Most studies use income elasticities 
to simulate the re-spending of cost savings on different goods and services and 
consequently capture the income effects of the energy efficiency improvement but not the 
substitution effects. But this approach is methodologically straightforward, does not require 
the imposition of arbitrary restrictions on consumer behaviour (e.g. seperability) and permits 
the use of a higher level of commodity disaggregation (Sorrell, 2010). 
 
This study seeks to improve the limited evidence base in this area by estimating the direct 
and indirect rebound effects following a number of energy efficiency improvements by UK 
households. We focus upon measures to improve the efficiency of heating and lighting 
systems and estimate rebound effects in GHG terms. We focus solely upon income effects, 
but we extend the existing literature by also allowing for the emissions embodied in energy 
efficiency equipment, such as insulation materials. 
 
Section 2 provides an overview of our approach, introducing the relevant concepts and 
terms, Section 3 describes the methodology in more detail and Section 4 introduces the 
analytical tools employed. Section 5 summarises the specific assumptions used and the 
implications of these assumptions for our estimates of rebound effects. Section 6 presents 
our results, investigates the sensitivity of these results to selected assumptions and 
highlights the policy implications. Section 7 concludes. 

 
Table 1: Previous estimates of combined direct and indirect rebound effects for households 
 

Author Number of 
Commodity 

Groups 

Abatement 
action 

Area  Measur
e 

Effects 
captured 

Estimated 
rebound 
effect (%) 

Lenzen 
and Day 
(2002) 

150 Efficiency 
and 

behavioural 
change 

Food; 
heating 

GHGs Income 45-123% 

Alfreddson 
(2004) 

300 Behavioural 
change 

Food; 
travel; 
utilities 

Carbon Income 7-300% 

Brannlund 
(2007) 

13 Efficiency Transport; 
utilities 

Carbon Income & 
substitution 

120-175% 

Mizobuchi 
(2008) 

13 Efficiency Transport; 
utilities 

Energy Income & 
substitution 

12-38% 

Kratena 
and Wuger 

(2008) 

6 Efficiency Transport; 
heating; 

electricity 

Energy Income & 
substitution 

37-86% 

Druckman 
et al 

(2011) 

16 Behavioural 
change 

Transport, 
heating, 

food 

GHGs Income 7-51%  

Thomas 
(2011) 

74 Efficiency Transport, 
electricity 

GHGs Income 7-25%  

Murray 
(2011) 

36 Efficiency & 
sufficiency 

Transport, 
lighting 

GHGs Income 5–40%  

 

2 Methodology - overview 

This study focuses upon seven measures that a typical UK household could take to reduce 
their consumption of electricity or heating fuels, together with their associated greenhouse 



7 

gas (GHG) emissions (Table 2). Four of these measures represent ‘dedicated’ energy 
efficiency investments, one represents the ‘natural replacement’ of energy conversion 
equipment with a more energy efficient option and two represent the ‘premature 
replacement’ of such equipment.1 In 2009, we estimate that all but one2 of the selected 
measures were likely to be cost effective for an average UK dwelling, although individual 
measures are not suitable for all dwellings and the potential cost savings vary widely from 
one dwelling to another. Between 2008 and 2012, four of the measures were eligible for 
investment subsidies under the UK Carbon Emissions Reduction Target (CERT). These 
subsidies are provided by energy suppliers and funded through a levy on household energy 
bills, with their availability varying with the socio-economic circumstances of the household 
(DECC, 2010e).  

 
Table 2: Selected energy efficient measures 

 

No. Measure Type Target Eligible 
for 

subsidy? 

1 Cavity wall insulation in un-insulated 
cavities 

Dedicated Heating Yes 

2 Topping up loft insulation to 270 mm Dedicated Heating Yes 
3 Replacing existing boilers with condensing 

boilers 
Natural 

replacement 
Heating No 

4 Insulating hot water tanks to best practice 
(75 mm jacket) 

Dedicated Heating Yes 

5 Replacing existing incandescent bulbs 
with compact fluorescents (CFLs) 

Premature 
replacement 

Electricity No 

6 Replacing all existing lighting with LEDs Premature 
replacement 

Electricity No 

7 Solar thermal heating Dedicated Heating Yes 

In, what follows, we estimate the impact on global GHG emissions of all eligible English 
dwellings adopting the relevant measure - for example, installing cavity wall insulation in all 
dwellings with unfilled cavity walls. The estimated impacts are the net result of three different 
effects which we label as the engineering, embodied and income effects respectively: 

 
� Engineering effect ( H∆ ): Each measure is expected to reduce the amount of energy 

required to deliver a given level of energy service (e.g. heating, lighting) over its lifetime. 
If the demand for energy services were to remain unchanged, there would be a 
corresponding reduction in household electricity and/or fuel consumption and the GHG 
emissions associated with that consumption. Hence, in this paper the engineering effect 
is an estimate of the change in energy-related GHG emissions assuming that the 
demand for energy services remains unchanged. 

� Embodied effect ( M∆ ): The manufacture and installation of the relevant energy 
efficient equipment (e.g. insulation materials) is associated with GHG emissions at 
different stages of the supply chain. The embodied effect is an estimate of the additional 
impact on global GHG emissions of adopting the energy efficiency measure compared to 
the relevant alternative. The alternative may be doing nothing in case of dedicated 
measures, purchasing less energy efficient equipment in case of natural replacement or 
continuing to use existing equipment in case of premature replacement. 

� Income effect ( G∆ ): The reduction in the effective price of the energy service is 
equivalent to an increase in real household income. This allows households to consume 
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more goods and services and thereby increase their overall ‘utility’. The income effect is 
an estimate of the impact on global GHG emissions of this increased consumption of 
goods and services (including energy services).  

The estimated impact thus includes both ‘direct’ emissions from the consumption of energy 
by the household and ‘indirect’ (or ‘embodied’) emissions from consumption of non-energy 
goods and services – for example, the emissions associated with manufacturing clothing in 
China and shipping it to the UK. Emissions from electricity consumption are commonly 
labelled as direct, although they occur at the power station.  
 
The estimated total impact ( Q∆ ) of the energy efficiency measure on global GHG emissions 

is given by: 
 

GMHQ ∆+∆+∆=∆         (1) 

 
For each measure, we expect the engineering effect ( H∆ ) to be negative and the income 
effect ( G∆ ) to be positive. We expect the embodied effect ( M∆ ) to be positive for dedicated 

measures, but its sign is ambiguous for natural and premature replacement measures. 
Overall, we expect each measure to reduce global GHG emissions, but by less than simple 

engineering calculations suggest ( HQ ∆≤∆ ). However, if the embodied and income 

effects exceed the engineering effect, the measure will increase global GHG emissions 
(‘backfire’) . 
 
The rebound effect (RE) from the energy efficiency improvement may then be defined as: 
 

H

QH

savingsExpected

savingsActualsavingsExpected
RE

∆

∆−∆
=

−
=

)(
    (2) 

or:  








∆

∆+∆
−=

H

MG
RE          (3) 

 
This definition treats the embodied effect ( M∆ ) as offsetting some of the anticipated GHG 
savings from the measure ( H∆ ) and thereby contributing to the rebound effect. An 
alternative approach is to subtract the embodied effect from the anticipated GHG savings: 
 










∆+∆

∆
−=

)(
*

MH

G
RE         (4) 

 
The difference between the two measures will depend upon the size of the embodied effect 
relative to the engineering and income effects.  
 
As defined here, the income effect ( G∆ ) derives from both increased consumption of energy 

by the household (including the energy commodity that benefits from the energy efficiency 
improvement) and increased consumption of other goods and services (e.g. clothing, 
education). It therefore combines the direct and indirect rebound effect as commonly 
defined. However, it does not provide a fully accurate measure of either, in part because 
substitution effects are neglected.  
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3 Methodology - details  

Each measure is assumed to be installed in all eligible dwellings in the UK in 2009 (t=1). We 
estimate the impact on GHG emissions over a period of T years (t=1 to T) where T is less 
than the economic lifetime of each measure. For simplicity, we present, most of our results 
for a ten-year period (T=10) and hold most of the variables affecting GHG emissions fixed 
over this period (e.g. household income, commodity prices, number of dwellings etc.). 
However, the framework can also allow these variables to change over time. We take 2005 
as the reference year for all real values.  
 
Our approach can be broken down into four stages, as follows. 

3.1 Estimating the engineering effect 

We use an engineering model (Firth et al., 2009) to estimate the energy consumption of the 
English dwelling stock by year (t=1 to T) and energy carrier (f). The relevant energy carriers 
are gas, oil, solid fuels and electricity. Dividing by the total number of English dwellings gives 

the average energy consumption per-household ( ftE ). We then apply the relevant energy 

efficiency measure to all eligible dwellings (which may be a subset of the total) and re-

estimate the average per-household energy consumption (
ftE ' ) assuming the demand for 

energy services remains unchanged. The change in average annual per-household energy 
consumption as a result of the measure is then: 
 

ftftft EEE −=∆ '          (5) 

 
These energy savings are assumed to begin in the year of installation of the relevant 
measure (t=1). With this approach, the estimated energy savings are averaged over the 
entire housing stock but only a portion of dwellings may be eligible for and hence benefiting 
from the relevant measure. For example, some dwellings do not have cavity walls while 
others have cavity walls that are already filled, so only a proportion of dwellings are suitable 
for cavity wall insulation. This means that, in percentage terms, the estimated average 
energy savings may be less than would be obtained for an individual dwelling installing the 
relevant measure, but they are representative of the potential energy savings obtainable 
from installing these measures in the English housing stock as a whole.3  
 
We then use data on the GHG intensity of each energy carrier (sft  in kgCO2e/kWh) to 
estimate the average per-household change in energy-related GHG emissions assuming the 
demand for energy services remains unchanged. We term this the engineering effect of the 

energy efficiency improvement ( tH∆ ): 

∑ ∆=∆
f

ftftt EsH          (6) 

3.2 Estimating the embodied effect 

We use the results of a number of life cycle analysis (LCA) studies to estimate the GHG 
emissions that are incurred in manufacturing and supplying the relevant energy efficient 
equipment and installing it in all eligible dwellings. We assign these so-called embodied 
emissions to the year in which the measures are installed4 and divide by the total number of 
dwellings to give the average per-household embodied emissions for the relevant measure 

( tM ' ). If T is less than the economic lifetime of the energy efficiency measure, the embodied 

emissions will only be relevant for the base year (i.e. 0' =tM
 
for t>1).  
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We also estimate the average per-household embodied emissions of the relevant alternative 

( tM ). If this alternative has an economic lifetime that is less than T, the measure will avoid 

the purchase of conversion equipment in subsequent years, with the result that the 

embodied emissions associated with those purchases are also avoided (i.e. 0>tM
 
for 

some t>1). This is the case, for example, with conventional lighting which has a shorter 
lifetime than energy efficient lighting.   
 
The difference between these two estimates represents the incremental embodied 
emissions associated with the energy efficiency measure. We term this the embodied effect 

of the energy efficiency improvement ( tM∆ ): 

 

ttt MMM −=∆ '          (7) 

 

 

3.3 Estimating the income effect 

In the UK, household energy bills normally include a fixed annual charge ( fta  in 

£/dwelling/year) and a charge per unit of energy used ( ftk  in £/kWh). Energy efficiency 

improvements only affect the latter. We use data for ‘average’ English dwelling in terms of 
energy consumption to estimate the change in average annual energy expenditures 

following the adoption of each measure ( tC∆ ), assuming the demand for energy services 

remains unchanged: 

∑ ∆=∆
f

ftftt EkC          (8) 

We also estimate the capital cost associated with installing the measure in all eligible 
dwellings and divide by the total number of dwellings to give the average per-household 

capital cost ( tK ' ). We do the same for the relevant alternative ( tK ), with the difference 

between the two representing the incremental capital cost of each measure ( tK∆ ): 

 

ttt KKK −=∆ '           (9) 

 
We assume that the full capital costs are incurred in the year in which the measure is 

installed (i.e. 0' =tK  for t>1).5 Again, if the relevant alternative has an economic lifetime that 

is less than T, the measure avoids equipment purchases in subsequent years (i.e. 0>tK  

for some t>1). For simplicity, we do not discount these avoided capital costs.  
 
We now look at how these costs affect the average annual real disposable income for a 
household (Yt). We treat the sum of the change in energy expenditures and the net capital 

payments in a given year as analogous to a change in real disposable income ( tY∆ ): 

 

)( ttt KCY ∆+∆−=∆          (10) 

 
Households are assumed to divide their disposable income between their expenditure on 
goods and services (Xt) and saving (St). For simplicity, we assume that households save a 
fixed fraction (r)6 of their disposable income each year: 
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tt YrS ∆=∆           (11) 

 
We assume that the remainder is entirely distributed between expenditure on different 

categories of goods and services. Letting itX

 

represent expenditure on commodity group i 

(i=1 to I), then: 

t

I

i

itt YrXX ∆−=∆=∆ ∑
=

)1(

1

        (12) 

 
This ‘adding up restriction’ leads to the so-called ‘Engel aggregation condition’, as follows 
(Deaton and Muelbauer, 1980): 
 

t

I

i

iti YrX )1(

1

−=∑
=

β          (13) 

 

Where iβ  represents the income elasticity of expenditure for commodity group i: 

 

it

t

t

it
i

X

Y

Y

X

∆

∆
=β           (14) 

 
The manufacture and supply of goods and services is necessarily associated with GHG 
emissions along the supply chain. Savings are treated here as a source of funds for capital 
investment in the UK which will also be associated with GHG emissions.7 We assign these 
emissions to the year in which the expenditure or saving is made. Hence, changes in 
expenditure and savings in a given year will lead to changes in GHG emissions which may 

either reinforce or offset the ‘engineering’ savings in GHG emissions. Letting itu  represent 

the GHG intensity of expenditure in category i and stu  represent the GHG intensity of UK 

investment8 (both in tCO2e/£), the average per-household change in GHG emissions as a 
consequence of the change in real disposable income is given by: 
 

[ ] tst

I

i

ititt YruXuG ∆+∆=∆ ∑
=1

        (15) 

 
Using Equation 14, the change in expenditure for each category can be written as: 
 

it

t

t
iit X

Y

Y
X

∆
=∆ β          (16) 

 
Substituting ∆Xit from Equation 16 into Equation 15: 
 

[ ] tst

I

i

itiit
t

t
t YruXu

Y

Y
G ∆+







∆
=∆ ∑

=1

β        (17) 

Substituting for Yt from Equation 13, this can also be written as: 
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[ ]





















+
−

∆=∆ ∑
∑ =

=

ruXu

X

r
YG st

I

i

itiitI

i

iti

t
tt

1

1

)1(
β

β

      (18) 

We term tG∆  the income effect of the energy efficiency improvement.  

 
 

3.4 Estimating the rebound effect 

Combining Equations 3 and 18, the rebound effect averaged over a period of T can then be 
estimated from: 
 

[ ]

∑

∑ ∑
∑

=

= =

=

∆

























∆+





















+
−

∆

−=
T

t

t

T

t

tst

I

i

itiitI

i

iti

t
t

H

MruXu

X

r
Y

RE

1

1 1

1

)1(
β

β

    (19) 

 

 

4 Analytical tools 

To develop the above estimates, we combine results from three separate analytical models. 
The Community Domestic Energy Model (CDEM) is used to estimate the energy savings 
from applying a number of standard energy efficiency measures to UK dwellings; the 
Econometric Lifestyle Environmental Scenario Analysis (ELESA) model is used to estimate 
how these cost savings are distributed between different categories of household goods and 
services; and the Surrey Environmental Lifestyle Mapping Framework (SELMA) is used to 
estimate the global GHG emissions from the production, distribution and consumption of 
these categories of goods and services, together with household savings. These three 
models are briefly described below. 

4.1 Community Domestic Energy Model (CDEM) 

The CDEM model (Firth et al., 2009) has been developed by Loughborough University to 
simulate energy use in the English housing stock and to explore options for reducing CO2 
emissions. The CDEM is one of a family of bottom-up, engineering models of the English 
housing stock that are based upon algorithms developed by the UK Building Research 
Establishment (Kavgic et al., 2010; Shorrock and Dunster, 1997). The CDEM consists of two 
main components: a house archetype calculation engine and a core building energy model. 
The archetype calculation engine defines the characteristics of 47 individual house 
archetypes, which are used to represent all the dwelling types in the English housing stock.9 
The archetypes are defined by different combinations of built form and age (Table 3), since 
these variables have a dominant influence on heat loss and hence the energy use for space 
heating - the former via average floor area and the number of exposed walls and the latter 
by the thermal standards of construction. 
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Table 3: House archetype categories in the Community Domestic Energy Model 
 

Built form categories Dwelling age band categories 

End terrace 
Mid-terrace 

Semi-detached 

Detached 

 
pre-1850; 1851-1899; 1900-1918; 1919-1944; 1945-1964; 
1965-1974; 1975-1980; 1980-1990; 1991-2001 

Flat: purpose-built  1900-1980; 1919-1944; 1945-1964; 1965-1974; 1975-1980; 
1980-1990; 1991-2001 

Flat: converted or other pre-1850; 1851-1899; 1900-1918; 1990-1944 
Note: Pre-1900 purpose-built flats and post-1945 other flats were not considered as these 
combinations occur very infrequently in the housing stock. 

 
 
Model input parameters are defined for each archetype, related to location, geometry, 
construction, services and occupancy. The model then estimates the solar gains, internal 
heat gains and dwelling heat loss coefficient10 for each archetype and calculates energy 
consumption by energy type (solid, gas, liquid and electricity) and end-use (space heating, 
hot water, cooking, lights and appliances) under specified weather conditions. Estimates of 
the energy consumption in an average dwelling in a given year (Eft) can then be derived 
from: 
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Where Efat represents the estimated consumption of energy carrier f in archetype a in year t, 
and Nat represents the estimated number of dwellings of that archetype in the English 
housing stock in that year. We take these estimates, which refer to an average English 
dwelling, as representative of the energy consumption of an average UK dwelling. 
 
 

4.2 Econometric Lifestyle Environmental Scenario Analysis model 
(ELESA) 

ELESA is a Structural Time Series Model (STSM) (Harvey, 1989) for UK household 
expenditure. It is estimated from quarterly time series data on aggregate UK household 
consumption expenditure over the period 1964-2009. The model estimates the expenditure 
on 16 different categories of goods and services (Table 4) as a function of household 
income, prices, temperature (where relevant) and a stochastic (rather than a deterministic) 
time trend (Hunt and Ninomiya, 2003). The stochastic trend aims to capture the aggregate 
effect of underlying factors such as technical progress, changes in consumer preferences, 
socio-demographic factors and changing lifestyles which are difficult to measure (Chitnis and 
Hunt, 2009; Chitnis and Hunt, 2010a, b). ELESA is used to forecast future household 
expenditure and associated GHG emissions under different assumptions for the relevant 
variables. 
 

In this study, estimates of the long-run income elasticity ( iβ ) for each category are obtained 

from ELESA and used within Equation 18 to estimate the income effect.11 These elasticities, 
together with household expenditure are held fixed over the projection interval. 
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Table 4: Commodity categories 

 

Category 
(i) 

CCOIP 
category 

Description 

1 1 Food & non-alcoholic beverages 
2 2 Alcoholic beverages, tobacco, narcotics 

3 3 Clothing & footwear 
4 4.5.1 Electricity 
5 4.5.2 Gas 

6 4.5.3 and 4.5.4 Other fuels 
7 4.1 to 4.4 Other housing 

8 5 Furnishings, household equipment & household maintenance 
9 6 Health 

10 7.2.2.2 Vehicle fuels and lubricants 
11 Rest of 7 Other transport 
12 8 Communication 

13 9 Recreation & culture 
14 10 Education 

15 11 Restaurants & hotels 
16 12 Miscellaneous goods & services  

Notes: COICOP - Classification of Individual Consumption According to Purpose. ‘Other housing’ 
includes rent, mortgage payments, maintenance, repair and water supply. 

 
 

4.3 Surrey Environmental Lifestyle Mapping framework (SELMA) 

SELMA estimates the GHG emissions that arise in the production, distribution, consumption 
and disposal of goods and services purchased in the UK.12 This is known as emissions 
accounting from the ‘consumption perspective’ (Druckman et al., 2008; Druckman and 
Jackson, 2009a, c, d; Minx et al., 2009; Wiedmann et al., 2007; Wiedmann et al., 2006). The 
estimates include emissions from direct energy use, such as for personal transportation and 
space heating, as well as ‘embodied’ emissions from the production and distribution of 
goods and services. An important feature of SELMA is that it takes account of all emissions 
incurred as a result of final consumption, whether they occur in the UK or abroad. To do this, 
the estimation of the embodied emissions is carried out using a Quasi-Multi Regional 
Environmentally-Extended Input-Output sub-model (Druckman and Jackson, 2008).  

For this study, emissions due to household expenditure are classified into 16 categories 
(Table 4) following the rationale outlined in Druckman and Jackson (2009b). The GHG 

intensity of expenditure (in tCO2e/£) in each of these categories ( itu ) is derived by dividing 

the estimated GHG emissions associated with UK consumption of those goods and services 
by the real expenditure of UK households on those goods and services. Both the emissions 
and real expenditure data refer to 2004. We also use the GHG intensity of UK investment13 

in 2004 as a proxy for the GHG intensity of household savings. These estimated GHG 
intensities are then held fixed over the projection interval. 

 

5 Assumptions and estimated effects 

In this section, we summarise our underlying assumptions and resulting estimates for the 
engineering effect ( tH∆ ), embodied effect ( tM∆ ) and income effect ( tG∆ ) respectively. 

The estimates are presented for each measure individually, as well as for two combinations 
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of measures and are averaged over a period of ten years (T=10). The estimates relate to an 
‘average’ dwelling, although only a portion of dwellings may be eligible for and hence 
benefiting from the relevant measure.  
 
Some relevant assumptions from the CDEM are summarised in Table 5, while the 
associated assumptions for the GHG intensity of delivered energy (in tCO2e/kWh) and the 
standing and unit cost of the energy carriers are given in Table 6. Note that we assume a 
constant proportion of low energy lighting and a constant thickness of tank insulation 
(29.4mm) across all dwellings, although in practice many dwellings do not have hot water 
tanks and the proportion of low-energy lighting varies widely. 
 

Table 5: Some relevant assumptions from the CDM model for 2009 
 

Total number of English dwellings 21,262,825 

Proportion of dwellings eligible for cavity wall insulation 39.4% 

Proportion of dwellings eligible for topping up loft insulation 67.9% 

Proportion of dwellings eligible for condensing boilers 80% 

Proportion of dwellings eligible for CFLs, LEDs and tank insulation 100% 

Mean net wall area of dwellings eligible for cavity wall insulation 67.3 m2 

Mean roof floor area of dwellings eligible for loft insulation 45 m2 

Mean thickness of existing loft insulation in dwellings eligible for loft 
insulation 

149 mm 

Proportion of households with non-condensing boilers 80% 

Mean thickness of existing hot water tank insulation 29.4 mm 

Proportion of current light bulb stock that are compact fluorescents 40% 

Average number of light fittings per-house 24 

 
 

Table 6: GHG intensity and cost of energy carriers for an average UK household in 2009 
 

 GHG intensity 

(kgCO2e/kWh) 

Standing costs 

(£/year) 

Unit costs 

(£/kWh) 

Gas 0.22554 £93.92 £0.03 

Oil 0.30786 - £0.05 

Solid 0.41342 - £0.04 

Electricity 0.61707 £44.51 £0.11 
Sources: (Coals2U, 2011; DECC, 2010a, b; Hansard, 2011) 
Notes: 

• GHG intensity includes indirect emissions from the fuel cycle and allows for distribution 
losses. 

• Nominal costs for a UK household with ‘average’ energy consumption. Costs for gas and 
electricity represent a weighted average of credit, direct debit and prepayment customers. 

As indicated in Table 7, we estimate that an average English household consumed 
approximately 22.5MWh of direct energy in 2009 at a total cost of ~£1100, of which 90% 
was consumption related (unit costs) and the remainder standing charges. This energy 
consumption was associated with approximately 7.1 tonnes of GHG emissions - including 
both direct emissions from fuel combustion and indirect emissions from different stages of 
the fuel cycle. Electricity accounted for 20% of direct energy consumption, 39% of energy-
related GHG emissions and 45% of energy expenditures. Gas provided the dominant fuel for 
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space and water heating, accounting for 90% of total fuel consumption and 72% of total 
energy consumption. Solid fuels provided a small and declining contribution, accounting for 
only 4% of energy use in 2009 and 5% of GHG emissions. We take these estimates as 
representative of UK households as a whole. 

Table 7: Estimated annual energy consumption, energy expenditure and energy-related GHG 
emissions for an ‘average’ UK dwelling in 2009 

 

 Gas Electricity Oil Solid 
Total 
fuel 

Total 
energy 

Consumption (kWh) 16237 4415 1101 787 18125 22540 

Expenditure (£) 509 499 58 32 600 1099 

GHG emissions (kgCO2e) 3662 2724 339 325 4326 7051 
Note: Expenditures in nominal terms.  
 
Estimates of the percentage annual energy, cost and GHG savings from applying the 
measures all eligible dwellings are shown in Table 8. This also shows the estimated total 
impact of applying measures 1, 2, 3, 4 and 5 in combination, as well as measures 1, 2, 3, 4 
and 6 in combination. Since the CDEM cannot be used to simulate solar thermal heating, we 
use a variety of sources to estimate the potential energy savings from fitting solar thermal 
panels to the estimated 40% of UK households with south facing roofs (see Annex 2). The 
results suggest that cavity wall insulation and upgrading to condensing boilers could each 
reduce energy-related GHG emissions by ~6%, installing solar thermal could reduce 
emissions by ~2.6%, and each of the remaining measures could reduce emissions by 
~1.5%. In combination, the measures have the potential to reduce energy-related GHG 
emissions by ~16%, which corresponds to ~5% of total UK GHG emissions and ~4% of the 
GHG footprint of an average UK household.14  
 
Since energy-efficient lighting converts less of the input energy into unwanted heat, the 
energy and emission savings from this measure may be offset by increased consumption of 
heating fuels in order to maintain internal temperatures (the ‘heat replacement effect’). 
Holding demand for energy services constant, we estimate that replacement of existing 
lighting by CFLs and LEDs will increase total household energy consumption by ~1%, but 
reduce energy costs by ~5% and energy-related GHG emissions by ~1.3%. Similarly, our 
estimates account for the reduction in the marginal energy savings from individual measures 
when used in combination with others. 

Table 8: Estimated annual savings in energy consumption, energy costs and energy-related 
GHG emissions from applying the measures to an ‘average’ UK dwelling in 2009 

 

No. Measure Annual energy 
saving (%) 

Annual energy 
cost saving (%) 

Annual GHG 
saving (%) 

1 Cavity wall 
insulation 

7.3 
4.9 5.9 

2 Loft insulation 1.9 1.3 1.5 

3 Condensing boiler 8.4 4.7 5.9 

4 Tank insulation 1.7 1.5 1.7 

5 CFLs 0.1 1.4 1.2 

6 LEDs 0.2 1.7 1.4 

7 Solar thermal 3.1 2.6 2.5 

8 1,2,3,4 and 5  18.5 13.2 15.6 

9 1,2,3,4 and 6  18.5 13.5 15.8 
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Annex 3 summarises our assumptions and estimates for the embodied effect of each 
measure. These are based upon LCA studies for the relevant materials and equipment, but 
this evidence is patchy and frequently makes inconsistent assumptions for key variables 
such as the GHG intensity of electricity. We assume that the incremental embodied 
emissions associated with the natural replacement of existing boilers are zero and we 
provide two sets of estimates for energy efficient lighting - the first allowing for the EU phase-
out of incandescent bulbs in the period to 2016 and the second assuming that these bulbs 
continue to be available. In the latter case, installing energy efficient lighting allows 
consumers to avoid replacing incandescent bulbs at two-year intervals over the subsequent 
ten years (see Annex 1). Since the embodied emissions associated with these purchases 
are also avoided, the second scenario leads to a lower estimate of the incremental 
embodied emissions associated with energy efficient lighting. 

Table 9 summarises our estimates for the incremental capital cost of each measure ( K∆ ) 
which are based upon information provided by the UK government (DECC, 2010d). Several 
of the measures are eligible for subsidies through CERT, with the level of subsidy being 
greater if the head of the house is at least 70 years old or is in receipt of certain income-
related benefits. Approximately 11.2 million UK households (42%) fall into this so-called 
Priority Group (PG), and DECC (2010d) estimates that approximately 55% of CERT-
subsidised measures will be installed in PG households. Hence, the estimates take into 
account both the level of subsidies available for PG and non-PG households and the relative 
proportion of installations expected within each. As with the embodied effect, we assume 
that the incremental capital cost of replacing an existing boiler with a condensing boiler is 
zero and we provide two sets of estimates for energy efficient lighting.  

 
Table 9: Estimated incremental capital cost for an ‘average’ UK dwelling over a period of ten 

years 

 

No. Measure Incremental capital cost – 
no subsidy 

(£) 

Incremental capital cost -
with subsidy 

(£) 

1 Cavity wall insulation 179 41 
2 Loft insulation  235 54 

3 Condensing boiler - - 
4 Tank insulation  17.50 6.3 
5 CFLs 57.6 (-21.6) 57.6 (-21.6) 
6 LEDs 254.4 (175.2) 127.2 (48) 
7 Solar thermal 1489 532 

8 1,2,3,4 and 5  409.9 79.7 
9 1,2,3,4 and 6  256.3 53.3 

Note: Estimates refer to an ‘average dwelling’ and are derived by estimating the capital costs 
associated with installing the measure in all eligible dwellings and dividing by the total number of 
dwellings. Estimates in brackets for energy efficient lighting are without allowing for the EU ban on 

incandescent bulbs. 
 
Table 10 summarises our assumptions for the expenditure share, long-run income elasticity, 
GHG intensity and share of total GHG emissions for each of the 16 categories of goods and 
services (see also Figure 2). Expenditure on domestic energy (i.e. gas, electricity and other 
fuels) accounted for 2.4% of household income in 2009, but this figure hides considerable 
variation between individual households. Approximately 4 million English households 
(18.4%) were estimated to be in ‘fuel poverty’ in 2009 - defined as needing to spend more 
than 10% of their income on energy in order to maintain an adequate standard of warmth 
(Hills, 2011).15  
 



18 

Table 10: Estimated expenditure shares, income elasticities and GHG intensities 
 

No Description Real 
expenditure 

share in 2009 
(%) 

Long-run 
income 

elasticity 

( iβ ) 

GHG 
intensity 

( itu ) 

(kgCO2e/£) 

GHG 
intensity 
as % of 

gas 

GHG 
emission
s as % of 

total 

1 Food & non-
alcoholic beverages 

7.9 0.18 1.3 14.0 11.7 

2 Alcohol and tobacco 3.2 0.29 0.2 2.2 0.7 
3 Clothing & footwear 6.6 0.36 0.4 4.3 3.0 
4 Electricity 1.1 0.30 8.0 78.5 9.1 
5 Gas 1.2 0.00 9.3 100.0 12.4 

6 Other fuels 0.1 0.35 10.3 110.8 1.6 
7 Other housing 15.8 0.15 0.3 3.2 5.4 
9 Furnishings etc. 4.7 0.70 0.7 7.5 3.7 
9 Health 1.7 0.08 0.3 3.2 0.6 

10 Vehicle fuels and 
lubricants 2.9 

0.08 2.8 
30.1 9.2 

11 Other transport 10.7 0.50 1.3 14.0 15.8 
12 Communication 2.1 0.17 0.3 3.2 0.7 
13 Recreation & culture 12.5 0.37 0.5 5.4 7.1 
14 Education 1.2 -0.23 0.3 3.2 0.4 
15 Restaurants & hotels 8.6 0.68 0.6 6.5 5.9 
16 Miscellaneous  12.5 0.41 0.5 5.4 7.1 

 Saving 7.8 0.0 0.6 6.5 5.3 
Source: GHG intensity estimates from SELMA. Elasticity estimates from ELESA. Expenditure share 
estimates from the UK Office of National Statistics (ONS). 

 

Figure 2 illustrates that the GHG intensity of expenditure on electricity, gas and other fuels is 
approximately four times greater than the mean GHG intensity of expenditure on the other 
commodity groups and ten times greater than the share-weighted mean. But this high GHG 
intensity is offset by the relatively small share of energy in total expenditure, with the result 
that domestic energy consumption accounts for less than one quarter of the GHG footprint of 
an average UK household (~28tCO2e/year) (Druckman and Jackson, 2010). ‘Other transport’ 
accounts for around 16% of the total GHG footprint, owing to the large contribution from 
aviation fuels, together with the emissions that are embodied in private cars and associated 
infrastructure. Aviation is estimated to account for ~5% of the total GHG emissions of an 
average UK household, despite the fact that up to half of UK households do not fly in an 
average year (Cairns et al., 2006). Moreover, allowing for the additional radiative forcing 
from contrails and nitrogen oxides could double this figure (Druckman and Jackson, 2010; 
RCEP, 2007). For car travel, the embodied emissions in vehicles and other infrastructure are 
only slightly less than the direct emissions from vehicle fuels which account for 9% of an 
average household's footprint.  
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Figure 2 Expenditure shares, GHG intensities and share of total household GHG emissions by 
commodity group 
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Table 11 and Figure 3 summarise the resulting estimates for the engineering, embodied and 
income effects for each of the measures, averaged over a ten year period. This 
demonstrates that, averaged across all measures, the embodied effect is around 40% of the 
income effect (or 15% if solar thermal is excluded), while the income effect is around 13% of 
the engineering effect. The implications of this for the estimated rebound effects are 
explored below. 

The estimated contribution of each commodity group to the income effect (Figure 4) depends 
upon the product of its GHG intensity, expenditure share and income elasticity. So for 
example, vehicle fuels are GHG intensive, but only account for 2.5% of the estimated 
income effect owing to their small expenditure share (2.1%) and low income elasticity (0.08). 
In contrast, other transport is only one third as GHG intensive as vehicle fuels, but accounts 
for 26% of the estimated income effect owing to its large expenditure share (11.5%), and 
high income elasticity (0.5). This suggests that our results could be sensitive to the elasticity 
assumptions used – and in particular to our assumption of a zero income elasticity for gas.16 
We test the sensitivity of our results to this assumption below. 

 
Table 11: Estimated engineering, embodied and income effect from each measure for an 

‘average’ dwelling over a ten year period (percentage of baseline GHG emissions) 
 

No. Measure Engineering 
effect  

Embodied effect Income effect 

1 Cavity wall insulation -8.8 0.13 1.10 
2 Loft insulation  -2.3 0.27 0.29 
3 Condensing boiler -9.0 0.00 1.16 
4 Tank insulation  -2.6 0.01 0.33 
5 CFLs -2.1 0.03 0.28 
6 LEDs -2.5 0.08 0.33 
7 Solar thermal -3.8 0.99 0.48 
8 1,2,3,4 and 5  -23.8 0.41 3.01 
9 1,2,3,4 and 6  -24.2 0.46 3.07 
Note: Estimates refer to an ‘average dwelling’ and are derived by estimating the total effect 
associated with installing the measure in all eligible dwellings and dividing by the total number of 
dwellings. 

 
Figure 3 Estimated engineering, embodied and income effect from each measure for an 

‘average’ dwelling over a ten year period (%) 

I 
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Figure 4 Estimated contribution of different commodity groups to the income effect 

 

 

6 Results 

In this section, we present our estimates of the rebound effects from the different measures 
averaged over a period of ten years. We present the results in four stages, namely:  
 
� income effects only, ignoring capital costs; 

� income and embodied effects, ignoring capital costs; 

� income and embodied effects, allowing for capital costs; and 

� sensitivity to key variables. 

 

6.1 Income effects only 

Figure 5 illustrates the estimated rebound effect from income effects alone, ignoring both the 
embodied effect and the capital cost of the measures. This shows that the estimated 
rebound effects are modest and broadly comparable across all measures, with a mean of 
12.4% for the heating measures 13.0% for energy efficient lighting and 12.5% for the two 
combinations of measures. These estimates are lower than many in the literature and derive 
from the fact that the bulk of the cost savings are spent on commodities that have a 
significantly lower GHG intensity than domestic energy consumption. The difference 
between the estimated rebound effects for lighting and heating measures is relatively small 
since expenditure on electricity is ~80% as GHG intensive as expenditure on natural gas. 

Figure 5 also breaks down the income effect into direct and indirect effects - where former 
relates to increased consumption of energy commodities (electricity, gas and other fuels) 
and the latter relates to increased consumption of other goods and services. This shows that 
indirect effects are substantially more important than direct effects - with the latter 
accounting for only 13% of the total. 

The estimated rebound effect for energy efficient lighting is influenced by our modelling of 
the heat replacement effect (i.e. the increased use of heating fuels to compensate for the 
loss of heat from incandescent bulbs). Heat replacement reduces the engineering effect from 
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energy efficient lighting by proportionately more than the income effect. Hence, when there 
is no heat replacement, our estimate of the rebound effect for lighting falls to 10%.  

Our estimates are comparable with earlier studies that used a similar methodology to 
investigate lighting and heating measures. For example, Druckman et al (2011) estimate a 
7% rebound effect following adjustment of thermostats by UK households, Murray (2011) 
estimates a 5% rebound effect following electricity conservation measures by Australian 
households and Thomas (2011) estimates a 7% rebound effect following improvements in 
electricity efficiency by US households. These three studies also estimate the rebound 
effects from personal transport measures (e.g. reducing car travel) and find these to be three 
to four times greater than those for electricity or heating measures. The primary reason is 
that expenditure on vehicle fuels is only one third as GHG intensive as expenditure on 
domestic energy (Table 10). 

 
Figure 5 Estimated rebound effects from income effects alone, showing contribution of direct 

and indirect effects 

 

 

6.2 Allowing for the embodied effect 

Figure 6 illustrates how the rebound effect is modified when an allowance is made for the 
embodied effect. Ignoring capital costs, this leads to a mean rebound effect of 20% for the 
heating measures (or 16% without solar thermal), 15% for the lighting measures and 14% for 
the two combinations of measures. The embodied effect is estimated to account for 10% of 
the rebound effect for cavity wall insulation, 20% for LED lighting, 49% for loft insulation and 
67% for solar thermal. This demonstrates that the embodied effect should not be ignored, 
but is nevertheless relatively small for all the measures considered. The exception is solar 
thermal, but even this has an estimated ‘GHG payback time’17 of less than three years. The 
contribution of the embodied effect to the rebound effect will depend upon the time interval of 
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interest. For example, averaging over five years raises the estimated rebound effect for the 
two combinations of measures by one percent. However, the most appropriate metric is the 
full economic lifetime of the relevant measure which in the case of insulation and solar 
thermal is many decades.  
 
These results treat the embodied effect ( M∆ ) as offsetting some of the anticipated GHG 
savings from the measure ( H∆ ) and thereby contributing to the rebound effect. An 
alternative approach (Equation 4) is to subtract the embodied effect from the anticipated 
GHG savings. This reduces the mean rebound effect to 14% for the heating measures (or 
13% without solar thermal), and to 13% for both the lighting measures and the two 
combinations of measures. Once again, this demonstrates that, with the exception of solar 
thermal, the income effect dominates.  
 
Figure 6 Estimated rebound effects from income and embodied effects, ignoring capital costs 

  

6.3 Allowing for capital costs 

Figure 7 illustrates how allowing for capital costs reduces the net cost saving from each 
measure and hence the estimated rebound effect - leading to a mean rebound effect of 3.4% 
for the heating measures (or 11% if solar thermal is ignored), 5% for the lighting measures 
and 11% for the two combinations of measures. With the assumptions used here, both solar 
thermal and LEDs are estimated to have a simple payback that exceeds ten years and 
hence are found to have a negative rebound effect over this period. Taking the CERT 
subsidies into account (Figure 8) leads to higher net cost saving and hence higher rebound 
effects – respectively 15% for the heating measures, 9% for the lighting measures and 14% 
for the two combinations of measures.  
 
In practice, only a portion of eligible households will benefit from subsidies and these will be 
funded through higher energy bills for all household consumers (Sorrell et al., 2009c). For 
example, DECC (2010c) estimates that CERT raised household gas prices by 2.8% in 2010 
and household electricity prices by 3.3%. These energy price increases will reduce real 
household incomes and expenditures and hence reduce both energy-related and total GHG 
emissions. As a result, the positive income effect from the energy efficiency improvements 
will be offset by a negative income effect from the energy price rises - for both participants 
and non-participants in CERT (Sorrell et al., 2009c). To properly account for this, it would be 
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necessary to estimate the proportional contribution of each measure to the overall increase 
in energy prices. 
 
These estimates also assume implementation of the EU Directive on energy efficient 
lighting. If instead, we assume that incandescent bulbs continued to be available, the 
embodied effect of energy efficient lighting would be lower (since the emissions embodied in 
subsequent purchases of incandescent bulbs would be avoided), but the income effect 
would be higher (since the cost of those purchases would be avoided too). The net effect is 
to raise the average rebound effect for lighting from 9% to 14%. 
 
Figure 7 Estimated rebound effects from income and embodied effects, with full capital costs 

 
Figure 8 Estimated rebound effects from income and embodied effects, with subsidised capital 
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6.4 Sensitivity to assumed elasticities 

Our results suggest that heating measures have a near-zero direct rebound effect, owing to 
our assumption that gas has an income elasticity of zero.18 But a growing literature finds 
direct rebound effects of 10-30% for heating measures, with significantly larger effects for 
households on low incomes (Sorrell et al., 2009a). Most of these studies capture both 
income and substitution effects, while our estimates are confined to the former.19 To explore 
this further, we re-estimated the results assuming an income elasticity of 0.9 for gas 
consumption (much higher than encountered in practice). This increased the estimated 
rebound effect for the heating measures from 14.7% to 16.4%, and that for the combination 
of measures from 13.5% to 16.5%. The overall rebound effect therefore appears relatively 
insensitive to assumed income elasticity of gas consumption, owing to the small share of gas 
in total expenditure. This suggests that the direct rebound effect for household heating may 
derive in large part from substitution effects, although the income effect will be greater for 
fuel poor households. 
 
For comparison, we repeated the analysis with different assumptions for the income 
elasticity of the ‘other transport’ category, which is the largest contributor to the income 
effect. Varying this from 0.1 to 0.9 changed the rebound effect for all measures combined 
from 12.6% to 14.6% - implying again that the results are relatively insensitive to the 
assumed income elasticities 
 

6.5 Sensitivity to the GHG intensity of electricity 

The above estimates hold all relevant variables fixed over the ten-year period, but changes 
in any of these variables will affect the results. Of particular interest are future changes in the 
GHG intensity of electricity, since this is anticipated to fall to ~55% of current levels by 2020 
and ~10% of current levels by 2030 (CCC, 2008). These changes will reduce the GHG 
savings from electricity efficiency improvements, while having a much smaller impact on the 
GHG emissions from re-spending. Repeating the analysis20 for energy efficient lighting, we 
find that: a 45% reduction in the GHG intensity of electricity leads to a rebound effect of 
24%; a 60% reduction leads to a rebound effect of 54%; and a 90% reduction leads to a 
negative rebound effect. The last result derives from the heat replacement effect, with the 
GHG savings from reduced electricity consumption being more than offset by increased 
emissions from heating fuels. Since incandescent bulbs will soon be eliminated, it is more 
insightful to model the rebound effect without heat replacement. This leads to an estimated 
rebound effect of 98%, implying virtually no GHG savings and a high risk of backfire.  
 
In these scenarios, energy efficient lighting reduces consumption of low carbon electricity but 
frees-up money to be spent on other goods and services whose GHG intensity is held fixed. 
The calculations therefore overestimate the rebound effect from such measures, since a shift 
to low carbon electricity would reduce the GHG intensity of other goods and services as well 
and thereby lower the embodied and income effects. However, at least 40% of embodied 
GHG emissions originate from countries outside the UK (including China), many of whom 
will make slower progress than the UK in reducing the carbon intensity of their 
manufacturing industries (Druckman and Jackson, 2008). As a result, the rebound effect (in 
GHG terms) from electricity efficiency measures in the UK may be expected to increase in 
the period to 2030. 
 
It should also be noted that UK electricity generators are participating in the EU emissions 
trading scheme (EU ETS) and hence are covered by an EU wide carbon cap. In this context, 
any actions that reduce carbon emissions from UK electricity generators, including 
improvements in household electricity efficiency, will not reduce global carbon emissions at 
all. This is because such actions will simply free up allowances that could be used by other 
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participants in the EU ETS to cover either increases in emissions or reduced emissions 
abatement (Sorrell and Sijm, 2003). Alternatively, the allowances may be banked and used 
in subsequent trading periods, but they will still ultimately be used to cover emissions. 
Hence, from this perspective, the engineering effect of electricity efficiency improvements is 
zero while the EU ETS cap is in place. As a result, improvements in electricity efficiency will 
increase aggregate GHG emissions as a consequence of the embodied and income 
effects.21  
 
However, this observation does not imply there is no justification for encouraging improved 
electricity efficiency through measures such as CERT. Such improvements may deliver 
longer term, environmental benefits,22 as well as contributing to other policy objectives such 
as tackling fuel poverty. Also, by addressing the market failures inhibiting such investment, 
such policies can encourage a more cost-effective means of delivering electricity services 
than increasing electricity supply. 
 

7 Summary  

This study has estimated the combined direct and indirect rebound effects from seven 
measures that improve the energy efficiency of UK dwellings. Five of these measures target 
heating energy consumption, two of them target electricity consumption and four are eligible 
for investment subsidies. The rebound effects were measured in GHG terms, including both 
direct and embodied emissions and relate to an average UK household. The effects were 
averaged over a period of ten years. 
 
Our main finding is that the rebound effects from these measures are in the range 5-15%, 
depending upon the time period examined and assumptions used. The primary source of 
these rebound effects is the re-spending of the cost savings on non-energy goods and 
services, and the primary reason the estimated effects are modest is that these goods and 
services are much less GHG intensive than energy consumption itself. Studies that have 
investigated measures in less GHG-intensive areas, such as vehicle travel and food 
consumption, have typically found much larger rebound effects. 
 
Unlike other studies, our results explicitly allow for the embodied emissions of the energy 
efficiency measures themselves. In most cases these were found to contribute a relatively 
small proportion (~15%) of the total rebound effect. However, there were exceptions (notably 
solar thermal) and the contribution of the embodied effect depends upon the time period 
examined. 
 
Direct rebound effects, such as increased consumption of heat following insulation 
improvements, were found to be much smaller than indirect effects, owing largely to the 
small share of energy in total household expenditure. However, as with most studies 
published to date, our methodology only captures the income effects from energy efficiency 
improvements and not the substitution effects. These could either add to or offset the income 
effects for both energy commodities and other goods and services and therefore lead to 
either a higher or lower rebound effect. In practice, we would expect most substitution to be 
towards the (now cheaper) energy services and away from other goods and services. Since 
the former are more GHG intensive than the latter, the net result, should be to increase the 
rebound effect. Hence, since our methodology neglects this mechanism, it is likely to 
underestimate rebound effects. 
 
The estimated rebound effect from improvements in electricity efficiency is sensitive to the 
GHG intensity of electricity expenditure. A transition to a low carbon generating system will 
increase the rebound effect (in GHG terms) from such measures and ultimately create the 
risk of backfire - with an increasing portion of these emissions occurring overseas. Moreover, 
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since emissions from UK electricity generators are capped by the EU ETS, such measures 
effectively lead to backfire already. This counter-intuitive observation demonstrates the 
importance of measures such as border carbon adjustments to discourage this type of 
carbon leakage.  
 
Our approach could be improved in a number of ways. For example, confining attention to 
an ‘average’ household precludes the investigation of how rebound effects vary between 
different socio-economic groups; using only 16 commodity groups overlooks the wide 
disparities in GHG intensity between commodities within each group; and the use of a static, 
I-O framework precludes the investigation of broader, economy-wide adjustments in prices 
and incomes. Further research should seek as far as possible to address these limitations 
and to establish the conditions under which rebound effects may be larger or smaller. 
However, trade-offs must always be made: for example, using a greater level of commodity 
disaggregation would make it harder to estimate substitution effects, since it is more difficult 
to obtain the required cross-price elasticity estimates. This suggests the need for multiple 
studies, offering complementary perspectives on this important phenomenon. 
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Annex 1 - Decomposing rebound effects into income and 
substitution effects 

For energy efficiency improvements, it is the reduction in the effective price of the 
energy service (e.g. the lower cost per mile) that drives the rebound effect. It is 
common practice to break down the behavioural response to this price reduction into 
an income effect and a substitution effect. This relies on the notion that households 
obtain utility from consuming goods and services and that they seek to maximise this 
utility. This breakdown is theoretical in that only the sum of the two effects is 
observed, but the income and substitution effects can be estimated statistically using 
standard techniques. Both the direct and indirect rebound effects can be broken 
down in this way. Energy efficiency improvements lead to both income and 
substitution effects, while behavioural changes only lead to income effects. 
 
The difference between income and substitution effects is illustrated in Figure A.1. 
This shows the theoretical trade-off between consumption of an energy service (S) 
by a household and consumption of another good or service (Z). Consumers are 
assumed to maximise their ‘utility’ (U) subject to a budget constraint. At one extreme, 
the consumer could choose to consume S0 of the energy service and none of Z, 
while at the other extreme she could consume Z0 of the other service and none of the 
energy service. Prior to the energy efficiency improvement, the optimum mix is given 
by (S1, Z1), where the budget constraint is tangential to the indifference curve U1. At 
this point, utility is maximised. An energy efficiency improvement reduces the 
effective price of the energy service (S) and allows greater consumption of both this 
and the other service (Z). The optimum mix is now given by (S2, Z2) where the new 
budget constraint is tangential to the indifference curve U2 which represents the 
maximum amount of utility that can be obtained from the new level of ‘real income’ 
(money income is unchanged). Hence, consumption of the energy service increases 
(S2>S1), consumption of the other commodity reduces (Z2<Z1) and the consumer 
obtains a higher level of utility (U2>U1).  
 
Figure A.2 also shows how the change in the mix of commodities consumed can be 
broken down into a substitution effect and an income effect. The substitution effect is 
defined as the change in consumption that would result from the change in relative 
prices if money income were adjusted to keep utility constant. In effect, the change in 
consumption is artificially restricted to a movement along the original indifference 
curve. But since the energy service has become cheaper, the consumer’s total 
purchasing power, or ‘real income’ has increased. This allows a shift from one 
indifference curve to another. The income effect is defined as the change in 
consumption that would result exclusively from this change in real income, holding 
other prices and money income constant. Standard techniques in microeconomics 
(the Slutsky equation) allow the two effects to be individually identified. Note that, in 
this case, the substitution (SS-S1) and income (S2-SS) effects for the energy service 
have the same sign and hence reinforce one another while the substitution (Zs<Z1), 
and income (Z2>ZS) effects for the other service have different signs and hence offset 
one another. 
 
To estimate income effects, it is necessary to have estimates of the GHG intensity 
and expenditure elasticity of different categories of household goods and services. 
To estimate substitution effects, it is necessary, in addition, to have estimates of the 
own-price and cross-price elasticities of different categories of goods and services. 
Empirical methods that use cross-sectional (i.e. single year) data on household 
expenditure are only able to estimate income effects since there is little variation in 
prices within a single year. In contrast, empirical methods that use either time series 
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or pooled cross-sectional (i.e. multi-year) data on household expenditure can 
estimate both income and substitution effects, since there is significant variation in 
prices from year to year.  
 
 

Figure A.1 Illustration of income and substitution effects 
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Annex 2 Assumptions for solar thermal heating 

We assume an average annual heat generation from solar panels of 500 kWh/m2 
and an average area of 3.5 m2 (DECC, 2010e) which leads to an assumed heat 
generation of ~1750 kWh/year from each panel. The associated carbon and cost 
savings depend upon the fuel mix for water heating. Using (DECC, 2002) we assume 
82.5% gas, 9.4% oil, 2.6% solid fuels and 5.5% electricity. Using the conversion 
factors in Table 6, this leads to estimated GHG savings for an eligible dwelling of 454 
kgCO2e/year (6.4%) and cost savings of £67/year (6.1%). 
 
We estimate that a maximum of 40% of UK dwellings have viable roof space for solar 
thermal heating, together with space for the hot water cylinder. Averaging over the 
whole dwelling stock, this leads to potential energy saving for an ‘average’ dwelling of 
700 kWh/year (2.6%), GHG savings of 182 kgCO2e/year (3.1%) and cost savings of 
£27/year (2.5%).  
 
The incentive payments proposed by the UK Renewable Heat Incentive (DECC, 
2010f) could transform the economics of solar thermal heating, but these are 
excluded from the present analysis since the level of payments had not been 
finalised at the time of writing. 

 
 

Annex 3 – Assumptions for the embodied GHGs of energy 
efficiency measures 

� Cavity wall insulation: We estimate that individual dwellings eligible for cavity wall 
insulation have a mean net wall area (after subtracting glazing and door areas) of 
67.3m2 and a mean cavity width of 65 mm (Firth et al., 2009). This gives 4.37m3 
of cavity which is assumed to be filled with mineral wool of density 25 kg/m3 and 

embodied GHGs of 1.28kgCO2e/kg (Hammond and Jones, 2011), leading to 140 
kgCO2e of embodied GHGs for an eligible dwelling. Assuming 39.4% of dwellings 
are eligible for cavity wall insulation, this leads to an estimate of 55.2 kgCO2e of 
embodied GHGs for an average dwelling. 

� Loft insulation: We estimate that individual dwellings eligible for top-up loft 
insulation have a mean roof area of 45 m² and a mean thickness of existing 
insulation of 0.149m (Firth et al., 2009; Johnston, 2003). Topping up existing 
insulation to 270 mm is assumed to require 5.45m3 of mineral wool of density 25 
kg/m3 and embodied GHGs of 1.28kgCO2e/kg (Hammond and Jones, 2011), 
leading to 174 kgCO2e of embodied GHGs for an eligible dwelling. Assuming 
67.9 of dwellings are eligible for top-up insulation,23 this leads to an estimate of 
118.3 kgCO2e of embodied GHGs for an average dwelling. 

� Condensing boiler: We could find no reliable information on the embodied GHGs 
of a condensing boiler relative to a less efficient alternative. More importantly, it is 
no longer possible to purchase an inefficient boiler in the UK, since all new 
boilers fitted from April 2005 must be 'A' or 'B' efficiency rated with a first law 
efficiency of 86% or more. Approximately one fifth of the existing boiler stock is 
condensing (Firth et al., 2009), but the premature replacement of an existing 
boiler before the end of its natural life is unlikely to be economic.24 We therefore 
assume the natural replacement of existing boilers at the end of their life and 
assume that the incremental embodied GHGs are zero.  
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� Tank insulation: We assume the replacement of the existing insulation jacket with 
a new jacket of standard size for a domestic boiler (1050 x 45 0 x 80 mm) and 
weight 1.7 kg. We assume the insulation material is fibreglass with embodied 
GHGs of 1.3 kgCO2e/kg, ignore all other materials and assume that all dwellings 
are eligible. This leads to an estimate of 2.3 kgCO2e for the embodied GHGs of 
an average dwelling. 

� Compact fluorescents: We assume an average of 24 light fittings per dwelling 
and an average load factor of 6% (Frondel and Lohmann, 2011; Peacock and 
Newborough, 2004).25 Using standard estimates of bulb lifetime (Osram, 2009), 
this implies an average lifetime of 2 years (1000 hours) for a standard 
incandescent bulb and 20 years (10000 hours) for a CFL. But common switching 
patterns have been shown to shorten CFL lifetimes (Jump et al., 2008), so we 
consider that a lifetime of 11 years (6000 hours) is more realistic. In either case, 
this implies that CFLs installed now should last at least ten years, which is the 
longest time period we consider for an estimate of rebound effects (T=10). We 
further assume that 40% of existing lighting is CFLs and that none of these bulbs 
will need to be replaced over the next ten years. Hence, over a ten-year period, 
we assume that the premature replacement of inefficient lighting in an average 
dwelling will require the purchase of 14.4 CFL bulbs and will avoid the purchase 
of 120 incandescent bulbs. Osram (Osram, 2009) estimate that a single 
incandescent bulb has embodied emissions of 0.14 kgCO2e while the 
corresponding figure for a CFL is 0.88 kgCO2e. Combining these assumptions 
leads to an estimate that, averaged over a period of 10 years (T=10), prematurely 
replacing incandescent with CFLs in an average dwelling will lead to incremental 
embodied GHGs of 2.59 kgCO2e. But these calculations ignore the EU legislation 
requiring the progressive phasing out of incandescent bulbs in the period up to 
September 2016. Allowing for this legislation lowers the embodied emissions of 
the counterfactual scenario and leads to a higher estimate of 12.7 kgCO2e. 

� LED lighting: We use a similar set of assumptions for estimating the incremental 
embodied emissions of prematurely replacing all existing lighting with LEDs, 
averaged over a period of 10 years. From (Osram, 2009), we assume that a 
single LED bulb has embodied emissions of 2.4 kgCO2e and a lifetime of up to 47 
years at 6 load factor. If we further assume that 40% of existing lighting is CFLs 
and these bulbs would have lasted ten years, then the purchase of 24 LEDs now 
will avoid the purchase of 120 incandescent bulbs over the next ten years. 
Combining these assumptions leads to an estimate that, averaged over a period 
of 10 years (T=10), prematurely replacing all existing lighting with LEDs in an 
average dwelling will lead to incremental embodied GHGs of 24.5 kgCO2e. But 
again, these calculations ignore the EU legislation requiring the progressive 
phasing out of incandescent bulbs. Allowing for this leads to a higher estimate of 
34.6 kgCO2e. 

� Solar thermal: Menzies (2010) provides LCA estimates for the embodied carbon 
of three 2.03m2 flat plate collectors, including cylinder, pipework, manufacturing, 
transport, installation and maintenance. This leads to an estimate of the 
embodied carbon for the total system of 1439 kgCO2. But this figure cannot be 
simply scaled to our 3.5m2 panel since the embodied carbon of items such as the 
cylinder is independent of panel size. Using the figures in Tables 2-9 in Menzies 
(2010), we estimate the embodied carbon of each component of a 3.5 m2 system, 
leading to a total figure of 1068 kgCO2. Assuming further that only 40% of 
dwellings are eligible for solar thermal, this leads to an estimate of 427 kgCO2e 
for the embodied GHGs of retrofitting solar panels to an average dwelling – which 
is substantially higher than the estimates for all the other measures combined. 
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Endnotes 
 

                                                
1  By natural replacement, we mean the replacement of equipment that has come to the end 
of its economic life. By premature replacement, we mean replacement of equipment that has 
not reached the end of its economic life. 

2 Solar thermal heating is unlikely to be cost effective without subsidies. 

3 These savings are a function of the number of eligible dwellings, their structure, composition 
and thermal integrity, the energy efficiency of the relevant conversion equipment and the 
effectiveness of the measure compared to the relevant alternative. 

4 The time profile of CO2 emissions is of little importance for climate impacts, since these 
depend primarily upon cumulative emissions (Allen et al., 2009). But time profiles are more 
relevant for non-CO2 GHGs. 

5 The framework can accommodate multi-year loan repayments if required. 

6 We assume a value of 7.8% for r which is the estimated UK saving ratio for 2009 
(www.ons.gov.uk). The mean over the period 2000-10 was 4.7%.  

7 An alternative is to treat savings as deferred consumption that will lead to GHG emissions 
at a later date. In this case, the environmental impact will depend upon future trends in 
incomes, interest rates, inflation rates, relative prices, consumption patterns and the GHG 
intensity of different goods and services.  

8 Investment includes: gross fixed capital formation; valuables; and changes in inventories. 

9 Based upon data from the 2008 English Housing Survey. 

10 The rate of fabric and ventilation heat loss an in steady-state conditions 

11 We use the long-run income elasticity, since we are estimating rebound effects over an 
extended period of time with other variables held fixed. 

12 SELMA is a general framework that can be applied to, for example, resource use (such as 
energy use), carbon dioxide emissions or GHGs. In this study we use the Kyoto basket of six 
GHGs: carbon dioxide, methane, nitrous oxide, hydro-fluorocarbons, perfluorocarbons and 
sulphur hexafluoride. These are estimated in units of carbon dioxide equivalent (CO2e) using 
the conversion factors specified in the UK Environmental Accounts. The choice of conversion 
factor depends upon the time frame of interest and the use of different time periods can lead 
to different conclusions regarding the relative global warming potential of different gases. 

13 Investment includes: gross fixed capital formation; valuables; and changes in inventories. 

14 UK emissions are measured here from a ‘production’ perspective which ignores emissions 
from aviation and shipping and those embodied in traded goods, while a households’ GHG 
footprint is measured from a ‘consumption’ perspective which includes the above categories 
of emissions. 

15 Defined as 21-23
o
C in the living areas and 18

o
C elsewhere. The definition is based on 

modelling estimates of required rather than actual expenditures and relates to all forms of 
energy, rather than heating fuels alone. 

16 The elasticity estimate for natural gas should be treated with caution since the gas 
expenditure estimation in ELESA is not completely satisfactory. A number of different 
experiments were undertaken and the equation used here was the ‘best’ [8] that could be 
obtained.  

17 The ratio of embodied GHG emissions to annual GHG savings.  
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18 We still estimate a small direct rebound effect for heating, since a proportion of heating 
energy derives from electricity and other fuels which are assumed to have a non zero income 
elasticity. 

19 These studies use a mix of (quasi-)experimental studies of efficiency improvements and 
econometric estimates of the own-price elasticity of heating demand, or various proxies for 
heating demand (Sommerville and Sorrell, 2007; Sorrell, 2007; Sorrell and Dimitropoulos, 
2007; Sorrell et al., 2009b). Most estimate rebound effects in energy, rather than GHG terms.  

20 In this sensitivity analysis we reduce the GHG intensity of direct electricity use but leave 
the GHG intensities of other goods and services unchanged.  

21 More specifically, emissions will be increased by the proportion of the embodied and 
income effects that is not covered by the EU ETS cap. 

22 This argument is valid for the period to 2020 - the end of EU ETS Phase 3. Beyond Phase 
3, it is expected that the EU ETS cap will be tightened and/or the policy framework modified. 
Hence, the effect of measures to improve electricity efficiency on GHG emissions after 2020 
will depend upon whether and how these measures influence the EU-wide policy mix after 
that date (including the stringency of any post-2020 EU ETS cap), together with the 
stringency of the international climate policy regime. To the extent that such measures 
contribute to lower and declining UK emissions they may help the UK in negotiating more 
stringent emission reduction targets, both within the EU and internationally and thereby 
contribute to global carbon abatement in the long-term.  

23 In 2007, DECC (2010e) estimated that 24.8% of GB dwellings had <100 mm insulation, 
32.7% between 100 and 150mm and 32.4% with >150 mm. For the same year, Firth et al 
(2009) estimate a roof U-value for average English dwelling of 0.4 W/m

2
. Ofgem (2008 p. 48) 

estimate typical U-values for an un-insulated roof of 2.3 W/m
2
K. This falls to 0.707 W/m

2
K 

with 50 mm insulation; 0.494 W/m
2
K with 100 mm; 0.387 W/m

2
K with 150 mm; 0.228 W/m

2
K 

with 200 mm: and 0.185 W/m
2
K with 270 mm. 

24 We estimate that premature replacement of an F-rated boiler would give a payback of 18 
years, with longer paybacks for replacement of C or D rated boilers. Premature replacement 
of a G-rated boiler (<70% efficient) may be economic, since this is eligible for CERT subsidies 
of up to 100%. G-rated boilers were installed before 1997 when UK building regulations first 
required a minimum thermal efficiency of 70% for new boilers. We estimate that 
approximately 37% of the 2009 English boiler stock was installed before that date. 

25 Background work for 40% house project suggests an average UK house using 100% 
incandescent bulbs had an annual lighting load of 731kWh (Peacock and Newborough, 
2004). Assuming the house has 24 60W lightbulbs, this implies an average load factor for 
each bulb of 6% (1.5 hours a day). For comparison, Frondel and Lohmann (2011) report an 
average load factor of 8.3% (2 hours/day) for lighting in a typical 3-4 person household and 
note that load factors will be lower in a single two-person household. 

 


